Spaces:
Sleeping
Sleeping
UnnamedUnknownx1234987789489
commited on
Commit
•
d355eed
1
Parent(s):
14fdc76
Create functions.py
Browse files- functions.py +820 -0
functions.py
ADDED
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from typing_extensions import TypedDict, List
|
4 |
+
from IPython.display import Image, display
|
5 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
6 |
+
from langchain.schema import Document
|
7 |
+
from langgraph.graph import START, END, StateGraph
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
import uuid
|
10 |
+
from langchain_groq import ChatGroq
|
11 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
12 |
+
from langchain_chroma import Chroma
|
13 |
+
from langchain_community.document_loaders import NewsURLLoader
|
14 |
+
from langchain_community.retrievers.wikipedia import WikipediaRetriever
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
from langchain.vectorstores import Chroma
|
17 |
+
from langchain_community.document_loaders import UnstructuredURLLoader, NewsURLLoader
|
18 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
19 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
20 |
+
from langchain_community.document_loaders import WebBaseLoader
|
21 |
+
from langchain_core.output_parsers import StrOutputParser
|
22 |
+
from langchain_core.output_parsers import JsonOutputParser
|
23 |
+
from langchain_community.vectorstores.utils import filter_complex_metadata
|
24 |
+
from langchain.schema import Document
|
25 |
+
from langchain_community.document_loaders.directory import DirectoryLoader
|
26 |
+
from langchain.document_loaders import TextLoader
|
27 |
+
from langgraph.graph import START, END, StateGraph
|
28 |
+
from langchain.retrievers import WebResearchRetriever
|
29 |
+
from langchain.callbacks.manager import CallbackManager
|
30 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
31 |
+
from exa_py import Exa
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
os.environ["LANGCHAIN_API_KEY"] = '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'
|
36 |
+
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
37 |
+
os.environ["LANGCHAIN_ENDPOINT"]= "https://api.smith.langchain.com"
|
38 |
+
os.environ["LANGCHAIN_PROJECT"] = "Lithuanian_law_v2_LT_Kalba_Groq"
|
39 |
+
os.environ["GROQ_API_KEY"] = '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'
|
40 |
+
os.environ["SERPER_API_KEY"] = '6f80701ecd004c2466e8bd7bcebacacf89c74b84'
|
41 |
+
exa = Exa(api_key="6ecb4e80-83e8-47c4-a116-c1041d0e096e")
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30):
|
49 |
+
|
50 |
+
model_name = "Alibaba-NLP/gte-multilingual-base"
|
51 |
+
model_kwargs = {'device': 'cpu',
|
52 |
+
"trust_remote_code" : 'False'}
|
53 |
+
encode_kwargs = {'normalize_embeddings': True}
|
54 |
+
embeddings = HuggingFaceEmbeddings(
|
55 |
+
model_name=model_name,
|
56 |
+
model_kwargs=model_kwargs,
|
57 |
+
encode_kwargs=encode_kwargs
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
|
63 |
+
vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
|
64 |
+
|
65 |
+
|
66 |
+
else:
|
67 |
+
st.write("Vector store doesnt exist and will be created now")
|
68 |
+
loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
|
69 |
+
docs = loader.load()
|
70 |
+
|
71 |
+
|
72 |
+
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
73 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap,
|
74 |
+
separators=["\n\n \n\n","\n\n\n", "\n\n", r"In \[[0-9]+\]", r"\n+", r"\s+"],
|
75 |
+
is_separator_regex = True
|
76 |
+
)
|
77 |
+
split_docs = text_splitter.split_documents(docs)
|
78 |
+
|
79 |
+
|
80 |
+
vectorstore = Chroma.from_documents(
|
81 |
+
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
|
86 |
+
|
87 |
+
return retriever
|
88 |
+
|
89 |
+
|
90 |
+
def handle_userinput(user_question, custom_graph):
|
91 |
+
# Add the user's question to the chat history and display it in the UI
|
92 |
+
st.session_state.messages.append({"role": "user", "content": user_question})
|
93 |
+
st.chat_message("user").write(user_question)
|
94 |
+
|
95 |
+
# Generate a unique thread ID for the graph's state
|
96 |
+
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
|
97 |
+
|
98 |
+
try:
|
99 |
+
# Invoke the custom graph with the input question
|
100 |
+
state_dict = custom_graph.invoke(
|
101 |
+
{"question": user_question, "steps": []}, config
|
102 |
+
)
|
103 |
+
|
104 |
+
docs = state_dict["documents"]
|
105 |
+
with st.sidebar:
|
106 |
+
st.subheader("Dokumentai, kuriuos Birutė gavo kaip kontekstą")
|
107 |
+
with st.spinner("Processing"):
|
108 |
+
for doc in docs:
|
109 |
+
# Extract document content
|
110 |
+
content = doc
|
111 |
+
|
112 |
+
# Extract document metadata if available
|
113 |
+
#metadata =doc.metadata.get('original_doc_name', 'unknown')
|
114 |
+
# Display content and metadata
|
115 |
+
st.write(f"Documentas: {content}")
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
# Check if a response (generation) was produced by the graph
|
121 |
+
if 'generation' in state_dict and state_dict['generation']:
|
122 |
+
response = state_dict["generation"]
|
123 |
+
|
124 |
+
# Add the assistant's response to the chat history and display it
|
125 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
126 |
+
st.chat_message("assistant").write(response)
|
127 |
+
else:
|
128 |
+
st.chat_message("assistant").write("Your question violates toxicity rules or contains sensitive information.")
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
# Display an error message in case of failure
|
132 |
+
st.chat_message("assistant").write("Klaida: Arba per didelis kontekstas suteiktas modeliui, arba užklausų serveryje yra per daug")
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
from typing import Annotated
|
139 |
+
|
140 |
+
def create_workflow(retriever):
|
141 |
+
class GraphState(TypedDict):
|
142 |
+
"""
|
143 |
+
Represents the state of our graph.
|
144 |
+
Attributes:
|
145 |
+
question: question
|
146 |
+
generation: LLM generation
|
147 |
+
search: whether to add search
|
148 |
+
documents: list of documents
|
149 |
+
generations_count : generations count
|
150 |
+
"""
|
151 |
+
question: Annotated[str, "Single"] # Ensuring only one value per step
|
152 |
+
generation: str
|
153 |
+
search: str
|
154 |
+
documents: List[str]
|
155 |
+
steps: List[str]
|
156 |
+
generation_count: int
|
157 |
+
|
158 |
+
|
159 |
+
llm = ChatGroq(
|
160 |
+
model="llama-3.3-70b-versatile",
|
161 |
+
temperature=0.2,
|
162 |
+
max_tokens=600,
|
163 |
+
max_retries=3,
|
164 |
+
|
165 |
+
)
|
166 |
+
llm_checker = ChatGroq(
|
167 |
+
model="llama3-groq-70b-8192-tool-use-preview",
|
168 |
+
temperature=0.1,
|
169 |
+
max_tokens=400,
|
170 |
+
max_retries=3,
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
workflow = StateGraph(GraphState)
|
181 |
+
|
182 |
+
# Define the nodes
|
183 |
+
workflow.add_node("ask_question", lambda state: ask_question(state))
|
184 |
+
workflow.add_node("retrieve", lambda state: retrieve(state, retriever))
|
185 |
+
workflow.add_node("grade_documents", lambda state: grade_documents(state, retrieval_grader_grader(llm_checker)))
|
186 |
+
workflow.add_node("generate", lambda state: generate(state, QA_chain(llm)))
|
187 |
+
workflow.add_node("web_search", web_search)
|
188 |
+
#workflow.add_node("transform_query", lambda state: transform_query(state, create_question_rewriter(llm)))
|
189 |
+
|
190 |
+
# Build graph
|
191 |
+
workflow.set_entry_point("ask_question")
|
192 |
+
workflow.add_edge("ask_question", "retrieve")
|
193 |
+
workflow.add_edge("retrieve", "grade_documents")
|
194 |
+
|
195 |
+
#workflow.add_edge("retrieve", "generate")
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
workflow.add_conditional_edges(
|
200 |
+
"grade_documents",
|
201 |
+
decide_to_generate,
|
202 |
+
{
|
203 |
+
"search": "web_search",
|
204 |
+
"generate": "generate",
|
205 |
+
|
206 |
+
},
|
207 |
+
)
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
workflow.add_edge("web_search", "generate")
|
213 |
+
workflow.add_edge("generate", END)
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
custom_graph = workflow.compile()
|
221 |
+
|
222 |
+
return custom_graph
|
223 |
+
|
224 |
+
def retrieval_grader_grader(llm):
|
225 |
+
"""
|
226 |
+
Function to create a grader object using a passed LLM model.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
llm: The language model to be used for grading.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
Callable: A pipeline function that grades relevance based on the LLM.
|
233 |
+
"""
|
234 |
+
class GradeDocuments(BaseModel):
|
235 |
+
"""Ar faktas gali būti, nors truputi, naudingas atsakant į klausimą."""
|
236 |
+
binary_score: str = Field(
|
237 |
+
description="Documentai yra aktualūs klausimui, 'yes' arba 'no'"
|
238 |
+
)
|
239 |
+
|
240 |
+
# Create the structured LLM grader using the passed LLM
|
241 |
+
structured_llm_grader = llm.with_structured_output(GradeDocuments)
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
# Define the prompt template
|
247 |
+
prompt = PromptTemplate(
|
248 |
+
template="""Jūs esate mokytojas, vertinantis viktoriną. Jums bus suteikta:
|
249 |
+
1/ KLAUSIMAS {question}
|
250 |
+
2/ Studento pateiktas FAKTAS {documents}
|
251 |
+
|
252 |
+
Jūs vertinate RELEVANCE RECALL:
|
253 |
+
yes reiškia, kad FAKTAS yra susijęs su KLAUSIMU.
|
254 |
+
no reiškia, kad FAKTAS nesusijęs su KLAUSIMU.
|
255 |
+
yes yra aukščiausias (geriausias) balas. no yra žemiausias balas, kurį galite duoti.
|
256 |
+
Jeigu galima iš Studento pateiktas FAKTAS gauti bet kokių įžvalgu susijusiu su KLAUSIMAS, duok įvertinimą yes.
|
257 |
+
|
258 |
+
Žingsnis po žingsnio paaiškinkite savo samprotavimus. Įsitikinkite, kad jūsų samprotavimai ir išvados yra teisingi.
|
259 |
+
|
260 |
+
Iš pradžių venkite tiesiog nurodyti teisingą atsakymą.
|
261 |
+
|
262 |
+
Klausimas: {question} \n
|
263 |
+
FAKTAS: \n\n {documents} \n\n
|
264 |
+
|
265 |
+
Suteikite dvejetainį balą „yes“ arba „no“, kad nurodytumėte, ar dokumentas yra susijęs su klausimu. \n
|
266 |
+
Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.
|
267 |
+
""",
|
268 |
+
input_variables=['documents', 'question'],
|
269 |
+
)
|
270 |
+
|
271 |
+
# Combine the prompt with the structured LLM grader
|
272 |
+
retrieval_grader = prompt | structured_llm_grader
|
273 |
+
|
274 |
+
# Return the grader object
|
275 |
+
return retrieval_grader
|
276 |
+
|
277 |
+
|
278 |
+
def create_toxicity_checker(llm):
|
279 |
+
"""
|
280 |
+
Function to create a toxicity checker object using a passed LLM model.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
llm: The language model to be used for toxicity checking.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
Callable: A pipeline function that checks for toxicity based on the LLM.
|
287 |
+
"""
|
288 |
+
|
289 |
+
# Define the class for toxicity check inside the function
|
290 |
+
class PromtGuard(BaseModel):
|
291 |
+
"""Binary score for toxicity check on question."""
|
292 |
+
score: str = Field(
|
293 |
+
description="Ar klausimams yra nesaugus, 'taip' arba 'ne'"
|
294 |
+
)
|
295 |
+
|
296 |
+
# Create the structured LLM toxicity checker using the passed LLM
|
297 |
+
|
298 |
+
|
299 |
+
# Create the structured LLM grader using the passed LLM
|
300 |
+
structured_llm_toxicity_checker = llm.with_structured_output(PromtGuard)
|
301 |
+
|
302 |
+
|
303 |
+
# Define the prompt template
|
304 |
+
prompt = PromptTemplate(
|
305 |
+
template="""Jūs esate klasifikatorius, kuris įvertins tekstą pagal pateiktus kriterijus.
|
306 |
+
Čia pateikiami taškų kriterijai:
|
307 |
+
|
308 |
+
(1) įžeidinėjimai
|
309 |
+
|
310 |
+
(2) grasinimai
|
311 |
+
|
312 |
+
(3) labai neigiami komentarai
|
313 |
+
|
314 |
+
(4) bet kokią asmenį identifikuojančią informaciją, pvz., API raktus
|
315 |
+
|
316 |
+
Rezultatas:
|
317 |
+
|
318 |
+
„Taip“ reiškia, kad tekstas atitinka BET KOKĮ kriterijų.
|
319 |
+
|
320 |
+
Įvertinimas „ne“ reiškia, kad tekstas neatitinka VISŲ kriterijų.
|
321 |
+
|
322 |
+
Štai klausimas: {question}
|
323 |
+
|
324 |
+
Suteikite dvejetainį balą „taip“ arba „ne“, kad nurodytumėte, ar atsakymas yra naudingas norint išspręsti klausimą.
|
325 |
+
Jei atsakyme yra pasikartojančių frazių, kartojimas, tada grąžinkite „ne“\n
|
326 |
+
Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.""",
|
327 |
+
input_variables=["question"],
|
328 |
+
)
|
329 |
+
|
330 |
+
# Combine the prompt with the structured LLM toxicity checker
|
331 |
+
toxicity_grader = prompt | structured_llm_toxicity_checker
|
332 |
+
|
333 |
+
# Return the toxicity checker object
|
334 |
+
return toxicity_grader
|
335 |
+
|
336 |
+
|
337 |
+
def grade_question_toxicity(state, toxicity_grader):
|
338 |
+
"""
|
339 |
+
Grades the question for toxicity.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
state (dict): The current graph state.
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
str: 'good' if the question passes the toxicity check, 'bad' otherwise.
|
346 |
+
"""
|
347 |
+
steps = state["steps"]
|
348 |
+
steps.append("promt guard")
|
349 |
+
score = toxicity_grader.invoke({"question": state["question"]})
|
350 |
+
grade = getattr(score, 'score', None)
|
351 |
+
|
352 |
+
if grade == "yes":
|
353 |
+
return "bad"
|
354 |
+
else:
|
355 |
+
return "good"
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
def create_helpfulness_checker(llm):
|
360 |
+
"""
|
361 |
+
Function to create a helpfulness checker object using a passed LLM model.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
llm: The language model to be used for checking the helpfulness of answers.
|
365 |
+
|
366 |
+
Returns:
|
367 |
+
Callable: A pipeline function that checks if the student's answer is helpful.
|
368 |
+
"""
|
369 |
+
|
370 |
+
class helpfulness_checker(BaseModel):
|
371 |
+
"""Binary score for toxicity check on question."""
|
372 |
+
score: str = Field(
|
373 |
+
description="Ar atsakymas yra naudingas?, 'taip' arba 'ne'"
|
374 |
+
)
|
375 |
+
|
376 |
+
# Create the structured LLM toxicity checker using the passed LLM
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
structured_llm_helpfulness_checker = llm.with_structured_output(helpfulness_checker)
|
381 |
+
|
382 |
+
|
383 |
+
# Create the structured LLM helpfulness checker using the passed LLM
|
384 |
+
|
385 |
+
# Define the prompt template
|
386 |
+
prompt = PromptTemplate(
|
387 |
+
template="""Jums bus pateiktas KLAUSIMAS {question} ir ATSAKYMAS {generation}.
|
388 |
+
Įvertinkite ATSAKYMĄ pagal šiuos kriterijus:
|
389 |
+
Aktualumas: ATSAKYMAS turi būti tiesiogiai susijęs su KLAUSIMU ir konkrečiai į jį atsakyti.
|
390 |
+
Pakankamas: ATSAKYME turi būti pakankamai informacijos, kad būtų galima visapusiškai atsakyti į KLAUSIMĄ. Jei ATSAKYME vartojamos tokios frazės kaip „nežinau“, „neturiu pakankamai informacijos“, „pateiktuose dokumentuose apie tai neužsimenama“ ar panašių posakių, kuriuose vengiama tiesiogiai atsakyti į KLAUSIMĄ, įvertinkite „ne“.
|
391 |
+
Aiškumas ir glaustumas: ATSAKYMAS turi būti aiškus, be jokių nereikalingų frazių ar pasikartojimų. Jei jame yra perteklinė arba netiesioginė informacija, o ne tiesioginis atsakymas, įvertinkite „ne“.
|
392 |
+
Balų skaičiavimo instrukcijos:
|
393 |
+
„Taip“ reiškia, kad ATSAKYMAS atitinka visus šiuos kriterijus ir tiesiogiai susijęs su KLAUSIMU.
|
394 |
+
Įvertinimas „ne“ reiškia, kad ATSAKYMAS neatitinka visų šių kriterijų.
|
395 |
+
Jei randate tokio žodžio tekstą, kaip aš nežinau, nepakanka informacijos arba panašaus į šį, balas yra ne.
|
396 |
+
Pateikite balą kaip JSON su vienu raktu "balas" ir be papildomo teksto""",
|
397 |
+
input_variables=["generation", "question"]
|
398 |
+
)
|
399 |
+
|
400 |
+
# Combine the prompt with the structured LLM helpfulness checker
|
401 |
+
helpfulness_grader = prompt | structured_llm_helpfulness_checker
|
402 |
+
|
403 |
+
# Return the helpfulness checker object
|
404 |
+
return helpfulness_grader
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
def create_hallucination_checker(llm):
|
411 |
+
"""
|
412 |
+
Function to create a hallucination checker object using a passed LLM model.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
llm: The language model to be used for checking hallucinations in the student's answer.
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
Callable: A pipeline function that checks if the student's answer contains hallucinations.
|
419 |
+
"""
|
420 |
+
|
421 |
+
|
422 |
+
class hallucination_checker(BaseModel):
|
423 |
+
"""Binary score for toxicity check on question."""
|
424 |
+
score: str = Field(
|
425 |
+
description="Ar dokumentas yra susijes su atsakymu?, 'taip' arba 'ne'"
|
426 |
+
)
|
427 |
+
|
428 |
+
# Create the structured LLM toxicity checker using the passed LLM
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
structured_llm_hallucination_checker = llm.with_structured_output(hallucination_checker)
|
433 |
+
|
434 |
+
# Define the prompt template
|
435 |
+
prompt = PromptTemplate(
|
436 |
+
template="""Jūs esate mokytojas, vertinantis viktoriną.
|
437 |
+
Jums bus pateikti FAKTAI ir MOKINIO ATSAKYMAS.
|
438 |
+
Jūs vertinate MOKINIO ATSAKYMĄ iš šaltinio FAKTAI. Sutelkite dėmesį į MOKINIO ATSAKYMO teisingumą ir bet kokių haliucinacijų aptikimą.
|
439 |
+
Įsitikinkite, kad MOKINIO ATSAKYMAS atitinka šiuos kriterijus:
|
440 |
+
(1) jame nėra informacijos, nesusijusios su FAKTAIS
|
441 |
+
(2) STUDENTŲ ATSAKYMAS turėtų būti visiškai pagrįstas ir pagrįstas pirminiuose dokumentuose pateikta informacija
|
442 |
+
Rezultatas:
|
443 |
+
„Taip“ reiškia, kad studento atsakymas atitinka visus kriterijus. Tai aukščiausias (geriausias) balas.
|
444 |
+
Balas „ne“ reiškia, kad studento atsakymas neatitinka visų kriterijų. Tai yra žemiausias galimas balas, kurį galite duoti.
|
445 |
+
Žingsnis po žingsnio paaiškinkite savo samprotavimus, kad įsitikintumėte, jog argumentai ir išvados yra teisingi.
|
446 |
+
Iš pradžių venkite tiesiog nurodyti teisingą atsakymą.
|
447 |
+
MOKINIO ATSAKYMAS: {generation} \n
|
448 |
+
FAKTAI: \n\n {documents} \n\n
|
449 |
+
|
450 |
+
Suteikite dvejetainį balą „taip“ arba „ne“, kad nurodytumėte, ar dokumentas yra susijęs su klausimu. \n
|
451 |
+
Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.""",
|
452 |
+
input_variables=["generation", "documents"],
|
453 |
+
)
|
454 |
+
|
455 |
+
# Combine the prompt with the structured LLM hallucination checker
|
456 |
+
hallucination_grader = prompt | structured_llm_haliucinations_checker
|
457 |
+
|
458 |
+
# Return the hallucination checker object
|
459 |
+
return hallucination_grader
|
460 |
+
|
461 |
+
|
462 |
+
def create_question_rewriter(llm):
|
463 |
+
"""
|
464 |
+
Function to create a question rewriter object using a passed LLM model.
|
465 |
+
|
466 |
+
Args:
|
467 |
+
llm: The language model to be used for rewriting questions.
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
Callable: A pipeline function that rewrites questions for optimized vector store retrieval.
|
471 |
+
"""
|
472 |
+
|
473 |
+
# Define the prompt template for question rewriting
|
474 |
+
re_write_prompt = PromptTemplate(
|
475 |
+
template="""Esate klausimų perrašytojas, kurio specializacija yra Lietuvos teisė, tobulinanti klausimus, kad būtų galima optimizuoti jų paiešką iš teisinių dokumentų. Jūsų tikslas – išaiškinti teisinę intenciją, pašalinti dviprasmiškumą ir pakoreguoti formuluotes taip, kad jos atspindėtų teisinę kalbą, daugiausia dėmesio skiriant atitinkamiems raktiniams žodžiams, siekiant užtikrinti tikslų informacijos gavimą iš Lietuvos teisės šaltinių.
|
476 |
+
Man nereikia paaiškinimų, tik perrašyto klausimo.
|
477 |
+
Štai pradinis klausimas: \n\n {question}. Patobulintas klausimas be paaiškinimų : \n""",
|
478 |
+
input_variables=["question"],
|
479 |
+
)
|
480 |
+
|
481 |
+
# Combine the prompt with the LLM and output parser
|
482 |
+
question_rewriter = re_write_prompt | llm | StrOutputParser()
|
483 |
+
|
484 |
+
# Return the question rewriter object
|
485 |
+
return question_rewriter
|
486 |
+
|
487 |
+
|
488 |
+
def transform_query(state, question_rewriter):
|
489 |
+
"""
|
490 |
+
Transform the query to produce a better question.
|
491 |
+
Args:
|
492 |
+
state (dict): The current graph state
|
493 |
+
Returns:
|
494 |
+
state (dict): Updates question key with a re-phrased question
|
495 |
+
"""
|
496 |
+
|
497 |
+
print("---TRANSFORM QUERY---")
|
498 |
+
question = state["question"]
|
499 |
+
documents = state["documents"]
|
500 |
+
steps = state["steps"]
|
501 |
+
steps.append("question_transformation")
|
502 |
+
|
503 |
+
# Re-write question
|
504 |
+
better_question = question_rewriter.invoke({"question": question})
|
505 |
+
print(f" Transformed question: {better_question}")
|
506 |
+
return {"documents": documents, "question": better_question}
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
def format_google_results_search(google_results):
|
511 |
+
formatted_documents = []
|
512 |
+
|
513 |
+
# Extract data from answerBox
|
514 |
+
answer_box = google_results.get("answerBox", {})
|
515 |
+
answer_box_title = answer_box.get("title", "No title")
|
516 |
+
answer_box_answer = answer_box.get("answer", "No text")
|
517 |
+
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
# Extract and add organic results as separate Documents
|
523 |
+
for result in google_results.get("organic", []):
|
524 |
+
title = result.get("title", "No title")
|
525 |
+
link = result.get("link", "Nėra svetainės adreso")
|
526 |
+
snippet = result.get("snippet", "No snippet available")
|
527 |
+
|
528 |
+
|
529 |
+
document = Document(
|
530 |
+
metadata={
|
531 |
+
"Organinio rezultato pavadinimas": title,
|
532 |
+
|
533 |
+
},
|
534 |
+
page_content=(
|
535 |
+
f"Pavadinimas: {title} "
|
536 |
+
f"Straipsnio ištrauka: {snippet} "
|
537 |
+
f"Nuoroda: {link} "
|
538 |
+
|
539 |
+
)
|
540 |
+
)
|
541 |
+
formatted_documents.append(document)
|
542 |
+
|
543 |
+
return formatted_documents
|
544 |
+
|
545 |
+
|
546 |
+
|
547 |
+
def format_google_results_news(google_results):
|
548 |
+
formatted_documents = []
|
549 |
+
|
550 |
+
# Loop through each organic result and create a Document for it
|
551 |
+
for result in google_results['organic']:
|
552 |
+
title = result.get('title', 'No title')
|
553 |
+
link = result.get('link', 'No link')
|
554 |
+
descripsion = result.get('description', 'No link')
|
555 |
+
snippet = result.get('snippet', 'No summary available')
|
556 |
+
text = result.get('text' , 'no text')
|
557 |
+
|
558 |
+
# Create a Document object with similar metadata structure to WikipediaRetriever
|
559 |
+
document = Document(
|
560 |
+
metadata={
|
561 |
+
'Title': title,
|
562 |
+
'Description': descripsion,
|
563 |
+
'Text' : text,
|
564 |
+
'Snippet': snippet,
|
565 |
+
'Source': link
|
566 |
+
},
|
567 |
+
page_content=snippet # Using the snippet as the page content
|
568 |
+
)
|
569 |
+
|
570 |
+
formatted_documents.append(document)
|
571 |
+
|
572 |
+
return formatted_documents
|
573 |
+
|
574 |
+
|
575 |
+
def QA_chain(llm):
|
576 |
+
"""
|
577 |
+
Creates a question-answering chain using the provided language model.
|
578 |
+
Args:
|
579 |
+
llm: The language model to use for generating answers.
|
580 |
+
Returns:
|
581 |
+
An LLMChain configured with the question-answering prompt and the provided model.
|
582 |
+
"""
|
583 |
+
# Define the prompt template
|
584 |
+
prompt = PromptTemplate(
|
585 |
+
template="""Esi teisės asistentas, kurio užduotis yra atsakyti konkrečiai, informatyviai ir glaustai , pagrindžiant savo atsakymą į klausima pagal pateiktus dokumentus.
|
586 |
+
Atsakymas turi būti lietuvių kalba. Nesikartok.
|
587 |
+
Jei negali atsakyti į klausimą, pasakyk, Atsiprašau, nežinau atsakymo į jūsų klausimą.
|
588 |
+
Neužduok papildomų klausimų.
|
589 |
+
|
590 |
+
Klausimas: {question}
|
591 |
+
Dokumentai: {documents}
|
592 |
+
Atsakymas:
|
593 |
+
""",
|
594 |
+
input_variables=["question", "documents"],
|
595 |
+
)
|
596 |
+
|
597 |
+
|
598 |
+
rag_chain = prompt | llm | StrOutputParser()
|
599 |
+
|
600 |
+
|
601 |
+
return rag_chain
|
602 |
+
|
603 |
+
|
604 |
+
def grade_generation_v_documents_and_question(state,hallucination_grader,answer_grader ):
|
605 |
+
"""
|
606 |
+
Determines whether the generation is grounded in the document and answers the question.
|
607 |
+
"""
|
608 |
+
print("---CHECK HALLUCINATIONS---")
|
609 |
+
question = state["question"]
|
610 |
+
documents = state["documents"]
|
611 |
+
generation = state["generation"]
|
612 |
+
generation_count = state.get("generation_count") # Use state.get to avoid KeyError
|
613 |
+
print(f" generation number: {generation_count}")
|
614 |
+
|
615 |
+
# Grading hallucinations
|
616 |
+
score = hallucination_grader.invoke(
|
617 |
+
{"documents": documents, "generation": generation}
|
618 |
+
)
|
619 |
+
grade = getattr(score, 'score', None)
|
620 |
+
|
621 |
+
# Check hallucination
|
622 |
+
if grade == "yes":
|
623 |
+
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
|
624 |
+
# Check question-answering
|
625 |
+
print("---GRADE GENERATION vs QUESTION---")
|
626 |
+
score = answer_grader.invoke({"question": question, "generation": generation})
|
627 |
+
grade = getattr(score, 'score', None)
|
628 |
+
if grade == "yes":
|
629 |
+
print("---DECISION: GENERATION ADDRESSES QUESTION---")
|
630 |
+
return "useful"
|
631 |
+
else:
|
632 |
+
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
|
633 |
+
return "not useful"
|
634 |
+
else:
|
635 |
+
if generation_count > 1:
|
636 |
+
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, TRANSFORM QUERY---")
|
637 |
+
# Reset count if it exceeds limit
|
638 |
+
return "not useful"
|
639 |
+
else:
|
640 |
+
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
|
641 |
+
# Increment correctly here
|
642 |
+
print(f" generation number after increment: {state['generation_count']}")
|
643 |
+
return "not supported"
|
644 |
+
|
645 |
+
|
646 |
+
def ask_question(state):
|
647 |
+
"""
|
648 |
+
Initialize question
|
649 |
+
Args:
|
650 |
+
state (dict): The current graph state
|
651 |
+
Returns:
|
652 |
+
state (dict): Question
|
653 |
+
"""
|
654 |
+
steps = state["steps"]
|
655 |
+
question = state["question"]
|
656 |
+
generations_count = state.get("generations_count", 0)
|
657 |
+
|
658 |
+
|
659 |
+
steps.append("question_asked")
|
660 |
+
return {"question": question, "steps": steps,"generation_count": generations_count}
|
661 |
+
|
662 |
+
|
663 |
+
def retrieve(state , retriever):
|
664 |
+
"""
|
665 |
+
Retrieve documents
|
666 |
+
Args:
|
667 |
+
state (dict): The current graph state
|
668 |
+
retriever: The retriever object
|
669 |
+
Returns:
|
670 |
+
state (dict): New key added to state, documents, that contains retrieved documents
|
671 |
+
"""
|
672 |
+
steps = state["steps"]
|
673 |
+
question = state["question"]
|
674 |
+
|
675 |
+
documents = retriever.invoke(question)
|
676 |
+
|
677 |
+
steps.append("retrieve_documents")
|
678 |
+
return {"documents": documents, "question": question, "steps": steps}
|
679 |
+
|
680 |
+
|
681 |
+
def generate(state,QA_chain):
|
682 |
+
"""
|
683 |
+
Generate answer
|
684 |
+
"""
|
685 |
+
question = state["question"]
|
686 |
+
documents = state["documents"]
|
687 |
+
generation = QA_chain.stream({"documents": documents, "question": question})
|
688 |
+
steps = state["steps"]
|
689 |
+
steps.append("generate_answer")
|
690 |
+
generation_count = state["generation_count"]
|
691 |
+
|
692 |
+
generation_count += 1
|
693 |
+
|
694 |
+
return {
|
695 |
+
"documents": documents,
|
696 |
+
"question": question,
|
697 |
+
"generation": generation,
|
698 |
+
"steps": steps,
|
699 |
+
"generation_count": generation_count # Include generation_count in return
|
700 |
+
}
|
701 |
+
|
702 |
+
|
703 |
+
def grade_documents(state, retrieval_grader):
|
704 |
+
question = state["question"]
|
705 |
+
documents = state["documents"]
|
706 |
+
steps = state["steps"]
|
707 |
+
steps.append("grade_document_retrieval")
|
708 |
+
|
709 |
+
filtered_docs = []
|
710 |
+
web_results_list = []
|
711 |
+
search = "No"
|
712 |
+
|
713 |
+
for d in documents:
|
714 |
+
# Call the grading function
|
715 |
+
score = retrieval_grader.invoke({"question": question, "documents": d})
|
716 |
+
print(f"Grader output for document: {score}") # Detailed debugging output
|
717 |
+
|
718 |
+
# Extract the grade
|
719 |
+
grade = getattr(score, 'binary_score', None)
|
720 |
+
if grade and grade.lower() in ["yes", "true", "1",'taip']:
|
721 |
+
filtered_docs.append(d)
|
722 |
+
elif len(filtered_docs) < 4:
|
723 |
+
search = "Yes"
|
724 |
+
|
725 |
+
# Check the decision-making process
|
726 |
+
print(f"Final decision - Perform web search: {search}")
|
727 |
+
print(f"Filtered documents count: {len(filtered_docs)}")
|
728 |
+
|
729 |
+
return {
|
730 |
+
"documents": filtered_docs,
|
731 |
+
"question": question,
|
732 |
+
"search": search,
|
733 |
+
"steps": steps,
|
734 |
+
}
|
735 |
+
|
736 |
+
def clean_exa_document(doc):
|
737 |
+
"""
|
738 |
+
Extracts and retains only the title, url, text, and summary from the exa result document.
|
739 |
+
"""
|
740 |
+
return {
|
741 |
+
" Pavadinimas: ": doc.title,
|
742 |
+
" Apibendrinimas: ": doc.summary,
|
743 |
+
" Straipnsio internetinis adresas: ": doc.url,
|
744 |
+
" Tekstas: ": doc.text
|
745 |
+
|
746 |
+
}
|
747 |
+
|
748 |
+
def web_search(state):
|
749 |
+
question = state["question"]
|
750 |
+
documents = state.get("documents", [])
|
751 |
+
steps = state["steps"]
|
752 |
+
steps.append("web_search")
|
753 |
+
k = 8 - len(documents)
|
754 |
+
web_results_list = []
|
755 |
+
|
756 |
+
# Fetch results from exa
|
757 |
+
exa_results_raw = exa.search_and_contents(
|
758 |
+
query=question,
|
759 |
+
start_published_date="2018-01-01T22:00:01.000Z",
|
760 |
+
|
761 |
+
type="keyword",
|
762 |
+
num_results=2,
|
763 |
+
text={"max_characters": 7000},
|
764 |
+
summary={
|
765 |
+
"query": "Tell in summary a meaning about what is article written. This summary has to be written in a way to be related to {question} Provide facts, be concise. Do it in Lithuanian language."
|
766 |
+
},
|
767 |
+
include_domains=[ "infolex.lt", "vmi.lt", "lrs.lt", "e-seimas.lrs.lt", "teise.pro",'lt.wikipedia.org', 'teismai.lt' ],
|
768 |
+
|
769 |
+
)
|
770 |
+
# Extract results
|
771 |
+
exa_results = exa_results_raw.results if hasattr(exa_results_raw, "results") else []
|
772 |
+
cleaned_exa_results = [clean_exa_document(doc) for doc in exa_results]
|
773 |
+
|
774 |
+
if len(cleaned_exa_results) <1:
|
775 |
+
web_results = GoogleSerperAPIWrapper(k=2, gl="lt", hl="lt", type="search").results(question)
|
776 |
+
formatted_documents = format_google_results_search(web_results)
|
777 |
+
web_results_list.extend(formatted_documents if isinstance(formatted_documents, list) else [formatted_documents])
|
778 |
+
|
779 |
+
combined_documents = documents + cleaned_exa_results +web_results_list
|
780 |
+
|
781 |
+
|
782 |
+
else:
|
783 |
+
combined_documents = documents + cleaned_exa_results
|
784 |
+
|
785 |
+
|
786 |
+
|
787 |
+
|
788 |
+
|
789 |
+
|
790 |
+
|
791 |
+
|
792 |
+
return {"documents": combined_documents, "question": question, "steps": steps}
|
793 |
+
|
794 |
+
def decide_to_generate(state):
|
795 |
+
"""
|
796 |
+
Determines whether to generate an answer, or re-generate a question.
|
797 |
+
Args:
|
798 |
+
state (dict): The current graph state
|
799 |
+
Returns:
|
800 |
+
str: Binary decision for next node to call
|
801 |
+
"""
|
802 |
+
search = state["search"]
|
803 |
+
if search == "Yes":
|
804 |
+
return "search"
|
805 |
+
else:
|
806 |
+
return "generate"
|
807 |
+
|
808 |
+
def decide_to_generate2(state):
|
809 |
+
"""
|
810 |
+
Determines whether to generate an answer, or re-generate a question.
|
811 |
+
Args:
|
812 |
+
state (dict): The current graph state
|
813 |
+
Returns:
|
814 |
+
str: Binary decision for next node to call
|
815 |
+
"""
|
816 |
+
search = state["search"]
|
817 |
+
if search == "Yes":
|
818 |
+
return "search"
|
819 |
+
else:
|
820 |
+
return "generate"
|