|
from typing import Union
|
|
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
|
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
|
NUM_SENTINEL_TOKENS: int = 100
|
|
|
|
def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
|
|
"""Adds sentinel tokens and padding token (if missing).
|
|
|
|
Expands the tokenizer vocabulary to include sentinel tokens
|
|
used in mixture-of-denoiser tasks as well as a padding token.
|
|
|
|
All added tokens are added as special tokens. No tokens are
|
|
added if sentinel tokens and padding token already exist.
|
|
"""
|
|
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
|
|
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.add_tokens('<pad>', special_tokens=True)
|
|
tokenizer.pad_token = '<pad>'
|
|
assert tokenizer.pad_token_id is not None
|
|
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
|
|
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
|
|
tokenizer.sentinel_token_ids = _sentinel_token_ids
|
|
|
|
class AutoTokenizerForMOD(AutoTokenizer):
|
|
"""AutoTokenizer + Adaptation for MOD.
|
|
|
|
A simple wrapper around AutoTokenizer to make instantiating
|
|
an MOD-adapted tokenizer a bit easier.
|
|
|
|
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
|
|
a padding token, and a property to get the token ids of the
|
|
sentinel tokens.
|
|
"""
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, *args, **kwargs):
|
|
"""See `AutoTokenizer.from_pretrained` docstring."""
|
|
tokenizer = super().from_pretrained(*args, **kwargs)
|
|
adapt_tokenizer_for_denoising(tokenizer)
|
|
return tokenizer |