import os import gradio as gr from gradio_imageslider import ImageSlider import argparse from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype import numpy as np import torch from SUPIR.util import create_SUPIR_model, load_QF_ckpt from PIL import Image from llava.llava_agent import LLavaAgent from CKPT_PTH import LLAVA_MODEL_PATH import einops import copy import time import spaces from huggingface_hub import hf_hub_download hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k") hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR") hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR") hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR") hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning") parser = argparse.ArgumentParser() parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml') parser.add_argument("--ip", type=str, default='127.0.0.1') parser.add_argument("--port", type=int, default='6688') parser.add_argument("--no_llava", action='store_true', default=True) parser.add_argument("--use_image_slider", action='store_true', default=False) parser.add_argument("--log_history", action='store_true', default=False) parser.add_argument("--loading_half_params", action='store_true', default=False) parser.add_argument("--use_tile_vae", action='store_true', default=False) parser.add_argument("--encoder_tile_size", type=int, default=512) parser.add_argument("--decoder_tile_size", type=int, default=64) parser.add_argument("--load_8bit_llava", action='store_true', default=False) args = parser.parse_args() server_ip = args.ip server_port = args.port use_llava = not args.no_llava if torch.cuda.device_count() > 0: if torch.cuda.device_count() >= 2: SUPIR_device = 'cuda:0' LLaVA_device = 'cuda:1' elif torch.cuda.device_count() == 1: SUPIR_device = 'cuda:0' LLaVA_device = 'cuda:0' else: SUPIR_device = 'cpu' LLaVA_device = 'cpu' # load SUPIR model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True) if args.loading_half_params: model = model.half() if args.use_tile_vae: model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size) model = model.to(SUPIR_device) model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder) model.current_model = 'v0-Q' ckpt_Q, ckpt_F = load_QF_ckpt(args.opt) # load LLaVA if use_llava: llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False) else: llava_agent = None @spaces.GPU(duration=120) def stage1_process(input_image, gamma_correction): if torch.cuda.device_count() == 0: gr.Warning('Set this space to GPU config to make it work.') return None print ("stage1_process 1") torch.cuda.set_device(SUPIR_device) print ("stage1_process 2") LQ = HWC3(input_image) print ("stage1_process 3") LQ = fix_resize(LQ, 512) print ("stage1_process 4") # stage1 LQ = np.array(LQ) / 255 * 2 - 1 print ("stage1_process 5") LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :] print ("stage1_process 6") LQ = model.batchify_denoise(LQ, is_stage1=True) print ("stage1_process 7") LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8) # gamma correction LQ = LQ / 255.0 print ("stage1_process 8") LQ = np.power(LQ, gamma_correction) print ("stage1_process 9") LQ *= 255.0 print ("stage1_process 10") LQ = LQ.round().clip(0, 255).astype(np.uint8) print ("stage1_process 11") return LQ @spaces.GPU(duration=120) def llave_process(input_image, temperature, top_p, qs=None): if torch.cuda.device_count() == 0: gr.Warning('Set this space to GPU config to make it work.') return 'Set this space to GPU config to make it work.' torch.cuda.set_device(LLaVA_device) if use_llava: LQ = HWC3(input_image) LQ = Image.fromarray(LQ.astype('uint8')) captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs) else: captions = ['LLaVA is not available. Please add text manually.'] return captions[0] @spaces.GPU(duration=120) def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select): if torch.cuda.device_count() == 0: gr.Warning('Set this space to GPU config to make it work.') return None, None, None, None torch.cuda.set_device(SUPIR_device) event_id = str(time.time_ns()) event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt, 'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps, 's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn, 's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype, 'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2, 'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2, 'model_select': model_select} if model_select != model.current_model: if model_select == 'v0-Q': print('load v0-Q') model.load_state_dict(ckpt_Q, strict=False) model.current_model = 'v0-Q' elif model_select == 'v0-F': print('load v0-F') model.load_state_dict(ckpt_F, strict=False) model.current_model = 'v0-F' input_image = HWC3(input_image) input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=1024) LQ = np.array(input_image) / 255.0 LQ = np.power(LQ, gamma_correction) LQ *= 255.0 LQ = LQ.round().clip(0, 255).astype(np.uint8) LQ = LQ / 255 * 2 - 1 LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :] if use_llava: captions = [prompt] else: captions = [''] model.ae_dtype = convert_dtype(ae_dtype) model.model.dtype = convert_dtype(diff_dtype) samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn, s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed, num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type, use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2, cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2) x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip( 0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] if args.log_history: os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True) with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f: f.write(str(event_dict)) f.close() Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png') for i, result in enumerate(results): Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png') return [input_image] + results, event_id, 3, '' @spaces.GPU(duration=120) def load_and_reset(param_setting): if torch.cuda.device_count() == 0: gr.Warning('Set this space to GPU config to make it work.') return None, None, None, None, None, None, None, None, None, None, None, None, None edm_steps = default_setting.edm_steps s_stage2 = 1.0 s_stage1 = -1.0 s_churn = 5 s_noise = 1.003 a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \ 'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \ 'detailing, hyper sharpness, perfect without deformations.' n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \ '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \ 'signature, jpeg artifacts, deformed, lowres, over-smooth' color_fix_type = 'Wavelet' spt_linear_s_stage2 = 0.0 linear_s_stage2 = False linear_CFG = True if param_setting == "Quality": s_cfg = default_setting.s_cfg_Quality spt_linear_CFG = default_setting.spt_linear_CFG_Quality elif param_setting == "Fidelity": s_cfg = default_setting.s_cfg_Fidelity spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity else: raise NotImplementedError return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \ linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2 def submit_feedback(event_id, fb_score, fb_text): if args.log_history: with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'r') as f: event_dict = eval(f.read()) f.close() event_dict['feedback'] = {'score': fb_score, 'text': fb_text} with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f: f.write(str(event_dict)) f.close() return 'Submit successfully, thank you for your comments!' else: return 'Submit failed, the server is not set to log history.' if torch.cuda.device_count() == 0: title_md = """

SUPIR: Practicing Model Scaling for Photo-Realistic Image Restoration

⚠️To use SUPIR, Duplicate this space and set a GPU with 30 GB VRAM. You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. This is a template space. Please provide feedback if you have issues.

""" else: title_md = """

SUPIR: Practicing Model Scaling for Photo-Realistic Image Restoration

⚠️SUPIR is still a research project under tested and is not yet a stable commercial product. PaperProject PageHow to playLocal Install Guide

For now, only the stage 2 is working (the most important one). The stage 1 and LLaVa are failing. LLaVa is disabled.

""" claim_md = """ ## **Terms of use** By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. ## **License** The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR. """ # Gradio interface with gr.Blocks(title='SUPIR') as interface: with gr.Row(): gr.HTML(title_md) with gr.Row(): with gr.Column(): with gr.Row(equal_height=True): with gr.Column(): gr.Markdown("
Input
") input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400) with gr.Column(): gr.Markdown("
Pre-denoising Output
") denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400) prompt = gr.Textbox(label="Image description", value="", placeholder="A person, walking, in a town, Summer, photorealistic") with gr.Accordion("Pre-denoising options", open=False): gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1) with gr.Accordion("LLaVA options", open=False): temperature = gr.Slider(label="Temperature", info = "lower=Always similar, higher=More creative", minimum=0., maximum=1.0, value=0.2, step=0.1) top_p = gr.Slider(label="Top P", info = "Percent of tokens shortlisted", minimum=0., maximum=1.0, value=0.7, step=0.1) qs = gr.Textbox(label="Question", info="Describe the image and its style in a very detailed manner", placeholder="The image is a realistic photography, not an art painting.") with gr.Accordion("Restoring options", open=False): num_samples = gr.Slider(label="Num Samples", info="Number of generated results; I discourage to increase because the process is limited to 2 min", minimum=1, maximum=4 if not args.use_image_slider else 1 , value=1, step=1) upscale = gr.Slider(label="Upscale", info="The resolution increase factor", minimum=1, maximum=8, value=1, step=1) edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1) s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0, value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1) s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05) s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0) seed = gr.Slider(label="Seed", info="-1=Different each time, other=Reproducible", minimum=-1, maximum=2147483647, step=1, randomize=True) s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1) s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001) a_prompt = gr.Textbox(label="Default Positive Prompt", info="Describe what the image represents", value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R ' 'camera, hyper detailed photo - realistic maximum detail, 32k, Color ' 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, ' 'hyper sharpness, perfect without deformations.') n_prompt = gr.Textbox(label="Default Negative Prompt", info="List what the image does NOT represent", value='painting, oil painting, illustration, drawing, art, sketch, anime, ' 'cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, ' 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, ' 'deformed, lowres, over-smooth') with gr.Row(): with gr.Column(): linear_CFG = gr.Checkbox(label="Linear CFG", value=True) spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0, maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5) with gr.Column(): linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False) spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0., maximum=1., value=0., step=0.05) with gr.Row(): with gr.Column(): diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16", interactive=True) with gr.Column(): ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16", interactive=True) with gr.Column(): color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", value="Wavelet", interactive=True) with gr.Column(): model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", value="v0-Q", interactive=True) with gr.Column(): gr.Markdown("
Restoring Output
") if not args.use_image_slider: result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1") else: result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1") with gr.Row(): with gr.Column(): denoise_button = gr.Button(value="Pre-denoise (KO)") with gr.Column(): llave_button = gr.Button(value="Auto-generate description (LlaVa)") with gr.Column(): diffusion_button = gr.Button(value="🚀 Restore", variant = "primary") with gr.Row(): with gr.Column(): param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Param Setting", value="Quality") with gr.Column(): restart_button = gr.Button(value="Reset Param", scale=2, variant="stop") with gr.Accordion("Feedback", open=True): fb_score = gr.Slider(label="Feedback Score", minimum=1, maximum=5, value=3, step=1, interactive=True) fb_text = gr.Textbox(label="Feedback Text", value="", placeholder='Please enter your feedback here.') submit_button = gr.Button(value="Submit Feedback") with gr.Row(): gr.Markdown(claim_md) event_id = gr.Textbox(label="Event ID", value="", visible=False) llave_button.click(fn=llave_process, inputs=[denoise_image, temperature, top_p, qs], outputs=[prompt]) denoise_button.click(fn=stage1_process, inputs=[input_image, gamma_correction], outputs=[denoise_image]) stage2_ips = [input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select] diffusion_button.click(fn=stage2_process, inputs=stage2_ips, outputs=[result_gallery, event_id, fb_score, fb_text]) restart_button.click(fn=load_and_reset, inputs=[param_setting], outputs=[edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2]) submit_button.click(fn=submit_feedback, inputs=[event_id, fb_score, fb_text], outputs=[fb_text]) interface.queue(10).launch()