Clean previous upload to try new sample
Browse files
app.py
CHANGED
@@ -58,70 +58,74 @@ st.caption("So, for this project have downloaded the pre-trained model [ybelkada
|
|
58 |
st.caption("For more detail: [Github link](https://github.com/SmithaUpadhyaya/fashion_image_caption)") #write
|
59 |
|
60 |
#Select few sample images for the catagory of cloths
|
61 |
-
st.
|
62 |
-
option = st.selectbox('From sample', ('None', 'dress', 'earrings', 'sweater', 'sunglasses', 'shoe', 'hat', 'heels', 'socks', 'tee', 'bracelet'), index = 0)
|
63 |
-
st.text("Or")
|
64 |
-
file_name = st.file_uploader(label = "Upload an image", accept_multiple_files = False)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
btn_click = st.button('Generate')
|
68 |
-
st.caption("Application deployed on CPU basic with 16GB RAM")
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
-
if
|
73 |
|
74 |
-
image =
|
|
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
image = Image.open(file_name)
|
80 |
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
image_col.header("Image")
|
85 |
-
caption_text.header("Generated Caption")
|
86 |
-
image_col.image(image.resize((252,252)), use_column_width = True)
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
st.session_state.init_model_required = init_model_required
|
97 |
-
st.session_state.processor = processor
|
98 |
-
st.session_state.model = model
|
99 |
-
else:
|
100 |
-
processor = st.session_state.processor
|
101 |
-
model = st.session_state.model
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
#Inferance on GPU. When used this on GPU will get errors like: "slow_conv2d_cpu" not implemented for 'Half'" , " Input type (float) and bias type (struct c10::Half)"
|
107 |
-
#inputs = processor(images = image, return_tensors = "pt").to('cuda', torch.float16)
|
108 |
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
-
|
|
|
113 |
|
114 |
-
|
115 |
-
generated_ids = model.generate(pixel_values = pixel_values, max_length = 25)
|
116 |
-
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens = True)[0]
|
117 |
|
118 |
-
|
119 |
-
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
file_name = None
|
125 |
|
126 |
#if __name__ == "__main__":
|
127 |
# main()
|
|
|
58 |
st.caption("For more detail: [Github link](https://github.com/SmithaUpadhyaya/fashion_image_caption)") #write
|
59 |
|
60 |
#Select few sample images for the catagory of cloths
|
61 |
+
with st.form("app", clear_on_submit = True):
|
|
|
|
|
|
|
62 |
|
63 |
+
st.caption("Select image:")
|
64 |
+
|
65 |
+
option = 'None'
|
66 |
+
option = st.selectbox('From sample', ('None', 'dress', 'earrings', 'sweater', 'sunglasses', 'shoe', 'hat', 'heels', 'socks', 'tee', 'bracelet'), index = 0)
|
67 |
+
|
68 |
+
st.text("Or")
|
69 |
+
|
70 |
+
file_name = None
|
71 |
+
file_name = st.file_uploader(label = "Upload an image", accept_multiple_files = False)
|
72 |
|
|
|
|
|
73 |
|
74 |
+
btn_click = st.form_submit_button('Generate')
|
75 |
+
st.caption("Application deployed on CPU basic with 16GB RAM")
|
76 |
|
77 |
+
if btn_click:
|
78 |
|
79 |
+
image = None
|
80 |
+
if file_name is not None:
|
81 |
|
82 |
+
image = Image.open(file_name)
|
83 |
|
84 |
+
elif option is not 'None':
|
|
|
85 |
|
86 |
+
file_name = os.path.join(sample_img_path, map_sampleid_name[option])
|
87 |
+
image = Image.open(file_name)
|
88 |
|
89 |
+
if image is not None:
|
|
|
|
|
|
|
90 |
|
91 |
+
image_col, caption_text = st.columns(2)
|
92 |
+
image_col.header("Image")
|
93 |
+
caption_text.header("Generated Caption")
|
94 |
+
image_col.image(image.resize((252,252)), use_column_width = True)
|
95 |
|
96 |
+
if 'init_model_required' not in st.session_state:
|
97 |
+
with st.spinner('Initializing model...'):
|
98 |
|
99 |
+
init_model_required = True
|
100 |
+
processor, model, init_model_required = init_model(init_model_required)
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
#Save session init model in session state
|
103 |
+
if 'init_model_required' not in st.session_state:
|
104 |
+
st.session_state.init_model_required = init_model_required
|
105 |
+
st.session_state.processor = processor
|
106 |
+
st.session_state.model = model
|
107 |
+
else:
|
108 |
+
processor = st.session_state.processor
|
109 |
+
model = st.session_state.model
|
110 |
|
111 |
+
with st.spinner('Generating Caption...'):
|
|
|
|
|
112 |
|
113 |
+
#Preprocess the image
|
114 |
+
#Inferance on GPU. When used this on GPU will get errors like: "slow_conv2d_cpu" not implemented for 'Half'" , " Input type (float) and bias type (struct c10::Half)"
|
115 |
+
#inputs = processor(images = image, return_tensors = "pt").to('cuda', torch.float16)
|
116 |
|
117 |
+
#Inferance on CPU
|
118 |
+
inputs = processor(images = image, return_tensors = "pt")
|
119 |
|
120 |
+
pixel_values = inputs.pixel_values
|
|
|
|
|
121 |
|
122 |
+
#Predict the caption for the imahe
|
123 |
+
generated_ids = model.generate(pixel_values = pixel_values, max_length = 25)
|
124 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens = True)[0]
|
125 |
|
126 |
+
#Output the predict text
|
127 |
+
caption_text.text(generated_caption)
|
128 |
+
|
|
|
129 |
|
130 |
#if __name__ == "__main__":
|
131 |
# main()
|