Change to include to test with provided sample images
Browse files
app.py
CHANGED
@@ -9,8 +9,20 @@ import os
|
|
9 |
preprocess_ckp = "Salesforce/blip2-opt-2.7b" #Checkpoint path used for perprocess image
|
10 |
base_model_ckp = "./model/blip2-opt-2.7b-fp16-sharded" #Base model checkpoint path
|
11 |
peft_model_ckp = "./model/blip2_peft" #PEFT model checkpoint path
|
12 |
-
sample_img_path = "./sample_images
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
#init_model_required = True
|
15 |
|
16 |
def init_model():
|
@@ -32,31 +44,33 @@ def init_model():
|
|
32 |
#init_model_required = False
|
33 |
|
34 |
return processor, model
|
35 |
-
|
36 |
|
37 |
def main():
|
38 |
|
39 |
st.title("Fashion Image Caption using BLIP2")
|
40 |
|
41 |
-
|
42 |
|
43 |
#Select few sample images for the catagory of cloths
|
44 |
-
|
|
|
45 |
st.text("OR")
|
46 |
file_name = st.file_uploader("Upload an image")
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
if file_name is None and option is not None:
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
|
|
|
|
|
|
57 |
|
|
|
58 |
image_col.header("Image")
|
59 |
-
image = Image.open(file_name)
|
60 |
image_col.image(image, use_column_width = True)
|
61 |
|
62 |
#Preprocess the image
|
@@ -75,7 +89,7 @@ def main():
|
|
75 |
#Output the predict text
|
76 |
caption_text.header("Generated Caption")
|
77 |
caption_text.text(generated_caption)
|
78 |
-
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
main()
|
|
|
9 |
preprocess_ckp = "Salesforce/blip2-opt-2.7b" #Checkpoint path used for perprocess image
|
10 |
base_model_ckp = "./model/blip2-opt-2.7b-fp16-sharded" #Base model checkpoint path
|
11 |
peft_model_ckp = "./model/blip2_peft" #PEFT model checkpoint path
|
12 |
+
sample_img_path = "./sample_images"
|
13 |
+
|
14 |
+
map_sampleid_name = {
|
15 |
+
'dress' : '00fe223d-9d1f-4bd3-a556-7ece9d28e6fb.jpeg',
|
16 |
+
'earrings': '0b3862ae-f89e-419c-bc1e-57418abd4180.jpeg',
|
17 |
+
'sweater': '0c21ba7b-ceb6-4136-94a4-1d4394499986.jpeg',
|
18 |
+
'sunglasses': '0e44ec10-e53b-473a-a77f-ac8828bb5e01.jpeg',
|
19 |
+
'shoe': '4cd37d6d-e7ea-4c6e-aab2-af700e480bc1.jpeg',
|
20 |
+
'hat': '69aeb517-c66c-47b8-af7d-bdf1fde57ed0.jpeg',
|
21 |
+
'heels':'447abc42-6ac7-4458-a514-bdcd570b1cd1.jpeg',
|
22 |
+
'socks': 'd188836c-b734-4031-98e5-423d5ff1239d.jpeg',
|
23 |
+
'tee': 'e2d8637a-5478-429d-a2a8-3d5859dbc64d.jpeg',
|
24 |
+
'bracelet': 'e78518ac-0f54-4483-a233-fad6511f0b86.jpeg'
|
25 |
+
}
|
26 |
#init_model_required = True
|
27 |
|
28 |
def init_model():
|
|
|
44 |
#init_model_required = False
|
45 |
|
46 |
return processor, model
|
|
|
47 |
|
48 |
def main():
|
49 |
|
50 |
st.title("Fashion Image Caption using BLIP2")
|
51 |
|
52 |
+
processor, model = init_model()
|
53 |
|
54 |
#Select few sample images for the catagory of cloths
|
55 |
+
st.text("Select image:")
|
56 |
+
option = st.selectbox('From sample', ('None', 'dress', 'earrings', 'sweater', 'sunglasses', 'shoe', 'hat', 'heels', 'socks', 'tee', 'bracelet'), index = 0)
|
57 |
st.text("OR")
|
58 |
file_name = st.file_uploader("Upload an image")
|
59 |
+
|
60 |
+
image = None
|
61 |
+
if file_name is not None:
|
|
|
62 |
|
63 |
+
image = Image.open(file_name)
|
64 |
|
65 |
+
elif option is not 'None':
|
66 |
|
67 |
+
file_name = os.path.join(sample_img_path, map_sampleid_name[option])
|
68 |
+
image = Image.open(file_name)
|
69 |
+
|
70 |
+
if image is not None:
|
71 |
|
72 |
+
image_col, caption_text = st.columns(2)
|
73 |
image_col.header("Image")
|
|
|
74 |
image_col.image(image, use_column_width = True)
|
75 |
|
76 |
#Preprocess the image
|
|
|
89 |
#Output the predict text
|
90 |
caption_text.header("Generated Caption")
|
91 |
caption_text.text(generated_caption)
|
92 |
+
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
main()
|