File size: 7,744 Bytes
a0c5619
 
 
 
 
6a16378
a0c5619
 
 
6a16378
a0c5619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import torch
import torch.nn.functional as F
from sentence_transformers import SentenceTransformer
import pickle
import streamlit as st
import requests
from dotenv import load_dotenv
load_dotenv()


API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
headers = {"Authorization": f"Bearer {os.getenv('notebook_token')}"}

def query_model(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()


class SentenceTransformerRetriever:
    def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", cache_dir: str = "embeddings_cache"):
        self.device = torch.device("cpu")
        self.model = SentenceTransformer(model_name, device=str(self.device))
        self.doc_embeddings = None
        self.cache_dir = cache_dir
        
    def load_specific_cache(self, cache_filename: str) -> dict:
        cache_path = os.path.join(self.cache_dir, cache_filename)
        if not os.path.exists(cache_path):
            raise FileNotFoundError(f"Cache file not found at {cache_path}")
        
        print(f"Loading cache from: {cache_path}")
        with open(cache_path, 'rb') as f:
            return pickle.load(f)

    def encode(self, texts: list) -> torch.Tensor:
        embeddings = self.model.encode(texts, convert_to_tensor=True, show_progress_bar=True)
        return F.normalize(embeddings, p=2, dim=1)

    def store_embeddings(self, embeddings: torch.Tensor):
        self.doc_embeddings = embeddings

    def search(self, query_embedding: torch.Tensor, k: int):
        if self.doc_embeddings is None:
            raise ValueError("No document embeddings stored!")

        similarities = F.cosine_similarity(query_embedding, self.doc_embeddings)
        scores, indices = torch.topk(similarities, k=min(k, similarities.shape[0]))
        
        return indices.cpu(), scores.cpu()

class RAGPipeline:
    def __init__(self, cache_filename: str, k: int = 10):
        self.cache_filename = cache_filename
        self.k = k
        self.retriever = SentenceTransformerRetriever()
        self.documents = []
        
        # Load the model
        # model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
        # if not os.path.exists(model_path):
        #     raise FileNotFoundError(f"Model file {model_path} not found!")

        # self.llm = Llama(
        #     model_path=model_path,
        #     n_ctx=4096,
        #     n_gpu_layers=0,  # CPU only
        #     verbose=False,
        # )

    def load_cached_embeddings(self):
        """Load embeddings from specific cache file"""
        try:
            cache_data = self.retriever.load_specific_cache(self.cache_filename)
            self.documents = cache_data['documents']
            self.retriever.store_embeddings(cache_data['embeddings'])
            return True
        except Exception as e:
            st.error(f"Error loading cache: {str(e)}")
            return False


    def process_query(self, query: str) -> str:
        MAX_ATTEMPTS = 5
        SIMILARITY_THRESHOLD = 0.4
        
        for attempt in range(MAX_ATTEMPTS):
            try:
                print(f"\nAttempt {attempt + 1}/{MAX_ATTEMPTS}")
                
                # Get query embedding and search for relevant docs
                query_embedding = self.retriever.encode([query])
                indices, _ = self.retriever.search(query_embedding, self.k)
            
                relevant_docs = [self.documents[idx] for idx in indices.tolist()]
                context = "\n".join(relevant_docs)
                
                prompt = f"""Context information is below in backticks:

                ```
                {context}
                ```
                
                Given the context above, please answer the following question:
                {query}

                If you cannot answer it based on the context, please mention politely that you don't know the answer. 
                Prefer to answer whatever information you can give to the user based on the context. 
                Answer in a paragraph format. 
                Answer using the information available in the context.
                Please don't repeat any part of this prompt in the answer. Feel free to use this information to improve the answer. 
                
                Answer:"""
                    
                output = query_model({
                    "inputs": prompt,
                    "parameters": {
                        "max_tokens":1024,
                        "temperature":0.4,
                        "top_p":0.95,
                        "echo":False,
                        "stop":["Question:", "\n\n"]
                    }
                })
                #print(output)
                #st.write(output[0]['generated_text'].split('Answer:')[1].strip())
                answer = output[0]['generated_text'].split('Answer:')[1].strip()
                
                # Check if response is empty or too short
                if not answer or len(answer) < 2:
                    print(f"Got empty or too short response: '{answer}'. Retrying...")
                    continue
                
                # Validate response relevance by comparing embeddings
                response_embedding = self.retriever.encode([answer])
                response_similarity = F.cosine_similarity(query_embedding, response_embedding)
                response_score = response_similarity.item()
                print(f"Response relevance score: {response_score:.3f}")
                
                if response_score < SIMILARITY_THRESHOLD:
                    print(f"Response: {answer}. Response relevance {response_score:.3f} below threshold {SIMILARITY_THRESHOLD}. Retrying...")
                    continue
                
                print(f"Successful response generated on attempt {attempt + 1}")
                return answer

            except Exception as e:
                print(f"Error on attempt {attempt + 1}: {str(e)}")
                continue

        return "I apologize, but after multiple attempts, I was unable to generate a satisfactory response. Please try rephrasing your question."


@st.cache_resource
def initialize_rag_pipeline(cache_filename: str):
    """Initialize and load the RAG pipeline with cached embeddings"""
    rag = RAGPipeline(cache_filename)
    success = rag.load_cached_embeddings()
    if not success:
        st.error("Failed to load cached embeddings. Please check the cache file path.")
        st.stop()
    return rag

def main():
    st.title("The Sport Chatbot")
    st.subheader("Using ESPN API")

    st.write("Hey there! 👋 I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball. With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.")
    st.write("Got any general questions? Feel free to ask—I'll do my best to provide answers based on the information I've been trained on!")

    # Use the specific cache file we know exists
    cache_filename = "embeddings_2296.pkl"
    
    try:
        rag = initialize_rag_pipeline(cache_filename)
    except Exception as e:
        st.error(f"Error initializing the application: {str(e)}")
        st.stop()

    # Query input
    query = st.text_input("Enter your question:")

    if st.button("Get Answer"):
        if query:
            with st.spinner("Searching for information..."):
                response = rag.process_query(query)
                st.write("### Answer:")
                st.write(response)
        else:
            st.warning("Please enter a question!")

if __name__ == "__main__":
    main()