sksstudio
commited on
Commit
·
5401975
1
Parent(s):
1be012e
sa
Browse files- .gitignore +1 -0
- app.py +71 -30
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
test.py
|
app.py
CHANGED
@@ -1,59 +1,100 @@
|
|
1 |
-
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from llama_cpp import Llama
|
4 |
from typing import Optional
|
5 |
import uvicorn
|
6 |
import huggingface_hub
|
7 |
import os
|
|
|
|
|
|
|
8 |
|
9 |
app = FastAPI(
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
)
|
14 |
|
15 |
# Download the model from Hugging Face Hub
|
16 |
model_path = huggingface_hub.hf_hub_download(
|
17 |
-
|
18 |
-
|
19 |
)
|
20 |
|
21 |
# Initialize the model with the downloaded file
|
22 |
llm = Llama(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
)
|
29 |
|
30 |
class GenerationRequest(BaseModel):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
class GenerationResponse(BaseModel):
|
37 |
-
|
38 |
|
39 |
@app.post("/generate", response_model=GenerationResponse)
|
40 |
async def generate_text(request: GenerationRequest):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
@app.get("/health")
|
54 |
async def health_check():
|
55 |
-
|
56 |
|
57 |
if __name__ == "__main__":
|
58 |
-
|
59 |
-
|
|
|
1 |
+
# app.py
|
2 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File
|
3 |
from pydantic import BaseModel
|
4 |
from llama_cpp import Llama
|
5 |
from typing import Optional
|
6 |
import uvicorn
|
7 |
import huggingface_hub
|
8 |
import os
|
9 |
+
from PIL import Image
|
10 |
+
import io
|
11 |
+
import base64
|
12 |
|
13 |
app = FastAPI(
|
14 |
+
title="OmniVLM API",
|
15 |
+
description="API for text and image processing using OmniVLM model",
|
16 |
+
version="1.0.0"
|
17 |
)
|
18 |
|
19 |
# Download the model from Hugging Face Hub
|
20 |
model_path = huggingface_hub.hf_hub_download(
|
21 |
+
repo_id="NexaAIDev/OmniVLM-968M",
|
22 |
+
filename="omnivision-text-optimized-llm-Q8_0.gguf"
|
23 |
)
|
24 |
|
25 |
# Initialize the model with the downloaded file
|
26 |
llm = Llama(
|
27 |
+
model_path=model_path,
|
28 |
+
n_ctx=2048,
|
29 |
+
n_threads=4,
|
30 |
+
n_batch=512,
|
31 |
+
verbose=True
|
32 |
)
|
33 |
|
34 |
class GenerationRequest(BaseModel):
|
35 |
+
prompt: str
|
36 |
+
max_tokens: Optional[int] = 100
|
37 |
+
temperature: Optional[float] = 0.7
|
38 |
+
top_p: Optional[float] = 0.9
|
39 |
+
|
40 |
+
class ImageRequest(BaseModel):
|
41 |
+
prompt: Optional[str] = "Describe this image in detail"
|
42 |
+
max_tokens: Optional[int] = 200
|
43 |
+
temperature: Optional[float] = 0.7
|
44 |
|
45 |
class GenerationResponse(BaseModel):
|
46 |
+
generated_text: str
|
47 |
|
48 |
@app.post("/generate", response_model=GenerationResponse)
|
49 |
async def generate_text(request: GenerationRequest):
|
50 |
+
try:
|
51 |
+
output = llm(
|
52 |
+
request.prompt,
|
53 |
+
max_tokens=request.max_tokens,
|
54 |
+
temperature=request.temperature,
|
55 |
+
top_p=request.top_p
|
56 |
+
)
|
57 |
+
|
58 |
+
return GenerationResponse(generated_text=output["choices"][0]["text"])
|
59 |
+
except Exception as e:
|
60 |
+
raise HTTPException(status_code=500, detail=str(e))
|
61 |
+
|
62 |
+
@app.post("/process-image", response_model=GenerationResponse)
|
63 |
+
async def process_image(
|
64 |
+
file: UploadFile = File(...),
|
65 |
+
request: ImageRequest = None
|
66 |
+
):
|
67 |
+
try:
|
68 |
+
# Read and validate the image
|
69 |
+
image_data = await file.read()
|
70 |
+
image = Image.open(io.BytesIO(image_data))
|
71 |
+
|
72 |
+
# Convert image to base64
|
73 |
+
buffered = io.BytesIO()
|
74 |
+
image.save(buffered, format=image.format or "JPEG")
|
75 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
76 |
+
|
77 |
+
# Create prompt with image
|
78 |
+
prompt = f"""
|
79 |
+
<image>data:image/jpeg;base64,{img_str}</image>
|
80 |
+
{request.prompt if request else "Describe this image in detail"}
|
81 |
+
"""
|
82 |
+
|
83 |
+
# Generate description
|
84 |
+
output = llm(
|
85 |
+
prompt,
|
86 |
+
max_tokens=request.max_tokens if request else 200,
|
87 |
+
temperature=request.temperature if request else 0.7
|
88 |
+
)
|
89 |
+
|
90 |
+
return GenerationResponse(generated_text=output["choices"][0]["text"])
|
91 |
+
except Exception as e:
|
92 |
+
raise HTTPException(status_code=500, detail=str(e))
|
93 |
|
94 |
@app.get("/health")
|
95 |
async def health_check():
|
96 |
+
return {"status": "healthy"}
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
+
port = int(os.environ.get("PORT", 7860))
|
100 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|