muzairkhattak
first commit for the demo
37b3db0
# Copyright (c) Meta Platforms, Inc. and affiliates
import hashlib
import os
import urllib
import warnings
from tqdm import tqdm
_RN50 = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"
)
_RN50_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"
)
_RN101 = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"
)
_RN101_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"
)
_RN50x4 = dict(
openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
)
_RN50x16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
)
_RN50x64 = dict(
openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
)
_VITB32 = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion2b_e16="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
)
_VITB32_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
metaclip_400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_400m.pt", "3c68642594a329afc1ec0fe489ee2b58ab19c9d0556ccf7c404a59baa0762d71"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_fullcc2.5b.pt", "885b7ec11fe07a9826e2e6812d70e5011918e32fe9b12136b49d5dded92b4386"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_fullcc2.5b.pt", "885b7ec11fe07a9826e2e6812d70e5011918e32fe9b12136b49d5dded92b4386"),
metaclip400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_400m.pt", "3c68642594a329afc1ec0fe489ee2b58ab19c9d0556ccf7c404a59baa0762d71"),
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_fullcc2.5b.pt", "885b7ec11fe07a9826e2e6812d70e5011918e32fe9b12136b49d5dded92b4386"),
)
_VITB16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt",
)
_VITB16_quickgelu = dict(
metaclip_400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_400m.pt", "68dfb5996c52a8f4fecb9bd16601e97e1895236645082778bd9cede8429a8d49"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_fullcc2.5b.pt", "512ea0fb9f2cf88d027e96e4674247a1a91a96af18abc2e2fcdb8008c551e04b"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_fullcc2.5b.pt", "512ea0fb9f2cf88d027e96e4674247a1a91a96af18abc2e2fcdb8008c551e04b"),
metaclip400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_400m.pt", "68dfb5996c52a8f4fecb9bd16601e97e1895236645082778bd9cede8429a8d49"),
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_fullcc2.5b.pt", "512ea0fb9f2cf88d027e96e4674247a1a91a96af18abc2e2fcdb8008c551e04b"),
)
_VITB16_PLUS_240 = dict(
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt",
)
_VITL14 = dict(
openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
laion400m_e31='https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt',
laion400m_e32='https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt',
)
_VITL14_quickgelu = dict(
metaclip_400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_400m.pt", "51c782959f920b030779e494517b8d545f56794df6b0a2796a4c310455a361be"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_fullcc2.5b.pt", "ce24750710544ee288ef0abdead2016730da1893a1d07447bda3a75e1c148f97"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_fullcc2.5b.pt", "ce24750710544ee288ef0abdead2016730da1893a1d07447bda3a75e1c148f97"),
metaclip400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_400m.pt", "51c782959f920b030779e494517b8d545f56794df6b0a2796a4c310455a361be"),
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_fullcc2.5b.pt", "ce24750710544ee288ef0abdead2016730da1893a1d07447bda3a75e1c148f97"),
)
_VITL14_336 = dict(
openai="https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"
)
_VITH14_quickgelu = dict(
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/h14_fullcc2.5b.pt", "1286807d5cc8d9a0b12563b47474efb53b9522eb3d7eac5a9a5d39c3a776ad5c"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/h14_fullcc2.5b.pt", "1286807d5cc8d9a0b12563b47474efb53b9522eb3d7eac5a9a5d39c3a776ad5c"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/h14_fullcc2.5b.pt", "1286807d5cc8d9a0b12563b47474efb53b9522eb3d7eac5a9a5d39c3a776ad5c"),
)
_VITbigG14_quickgelu = dict(
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/G14_fullcc2.5b.pt", "5fe2b83c7439e0caa2c855dec9a2eaa54f17f3ced288218564b640ca7953447f"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/G14_fullcc2.5b.pt", "5fe2b83c7439e0caa2c855dec9a2eaa54f17f3ced288218564b640ca7953447f"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/G14_fullcc2.5b.pt", "5fe2b83c7439e0caa2c855dec9a2eaa54f17f3ced288218564b640ca7953447f"),
)
_PRETRAINED = {
"RN50": _RN50,
"RN50-quickgelu": _RN50_quickgelu,
"RN101": _RN101,
"RN101-quickgelu": _RN101_quickgelu,
"RN50x4": _RN50x4,
"RN50x16": _RN50x16,
"RN50x64": _RN50x64,
"ViT-B-32": _VITB32,
"ViT-B-32-quickgelu": _VITB32_quickgelu,
"ViT-B-16": _VITB16,
"ViT-B-16-quickgelu": _VITB16_quickgelu,
"ViT-B-16-plus-240": _VITB16_PLUS_240,
"ViT-L-14": _VITL14,
"ViT-L-14-quickgelu": _VITL14_quickgelu,
"ViT-L-14-336": _VITL14_336,
"ViT-H-14-quickgelu": _VITH14_quickgelu,
"ViT-bigG-14-quickgelu": _VITbigG14_quickgelu,
}
def list_pretrained(as_str: bool = False):
""" returns list of pretrained models
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
"""
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
def list_pretrained_tag_models(tag: str):
""" return all models having the specified pretrain tag """
models = []
for k in _PRETRAINED.keys():
if tag in _PRETRAINED[k]:
models.append(k)
return models
def list_pretrained_model_tags(model: str):
""" return all pretrain tags for the specified model architecture """
tags = []
if model in _PRETRAINED:
tags.extend(_PRETRAINED[model].keys())
return tags
def get_pretrained_url(model: str, tag: str):
if model not in _PRETRAINED:
return ''
model_pretrained = _PRETRAINED[model]
tag = tag.lower()
if tag not in model_pretrained:
return ''
return model_pretrained[tag]
def download_pretrained(url: str, root: str = os.path.expanduser("~/.cache/clip")):
os.makedirs(root, exist_ok=True)
if 'openaipublic' in url:
expected_sha256 = url.split("/")[-2]
elif isinstance(url, tuple):
assert len(url) == 2, "url w/ sha256 hash must be in form (url, sha256) tuple."
expected_sha256 = url[1]
url = url[0]
else:
expected_sha256 = ''
filename = os.path.basename(url)
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
if expected_sha256:
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
return download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
else:
return download_target
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
if expected_sha256 and hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
return download_target