muzairkhattak
first commit for the demo
37b3db0
# Copyright (c) Meta Platforms, Inc. and affiliates
import sys
sys.path.append("src")
import logging
import os
import random
from datetime import datetime
from functools import partial
import numpy as np
import torch
from torch import optim
from torch.cuda.amp import GradScaler
try:
import wandb
except ImportError:
wandb = None
try:
import torch.utils.tensorboard as tensorboard
except ImportError:
tensorboard = None
try:
import horovod.torch as hvd
except ImportError:
hvd = None
from open_clip import create_model_and_transforms, trace_model, get_mean_std
from training.data import get_data
from training.distributed import is_master, init_distributed_device, world_info_from_env
from training.logger import setup_logging
from training.params import parse_args
from training.scheduler import cosine_lr
from training.train import train_one_epoch, evaluate
from training import train
def save_checkpoint(model, optimizer, scaler, completed_epoch, args):
checkpoint_dict = {
"epoch": completed_epoch,
"name": args.name,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
if scaler is not None:
checkpoint_dict["scaler"] = scaler.state_dict()
if args.save_logs:
if completed_epoch == args.epochs or (
args.save_frequency > 0 and completed_epoch % args.save_frequency == 0
):
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"),
)
if args.save_most_recent:
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_latest.pt"),
)
def random_seed(seed=42, rank=0):
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
random.seed(seed + rank)
def main(args=None):
if args is None:
args = parse_args()
# sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule?
args.model = args.model.replace('/', '-')
# get the name of the experiments
if args.name is None:
args.name = '-'.join([
datetime.now().strftime("%Y_%m_%d-%H_%M_%S"),
f"model_{args.model}",
f"lr_{args.lr}",
f"b_{args.batch_size}",
f"j_{args.workers}",
f"p_{args.precision}",
])
# discover initial world args early so we can log properly
args.distributed = False
args.local_rank, args.rank, args.world_size = world_info_from_env()
args.log_path = None
if is_master(args, local=args.log_local):
log_base_path = os.path.join(args.logs, args.name)
os.makedirs(log_base_path, exist_ok=True)
log_filename = f'out-{args.rank}' if args.log_local else 'out.log'
args.log_path = os.path.join(log_base_path, log_filename)
if os.path.exists(args.log_path) and args.resume is None and not hasattr(args, "eval"):
print(
"Error. Experiment already exists. Use --name {} to specify a new experiment."
)
return -1
# Set logger
args.log_level = logging.DEBUG if args.debug else logging.INFO
setup_logging(args.log_path, args.log_level)
# fully initialize distributed device environment
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
device = init_distributed_device(args)
args.wandb = 'wandb' in args.report_to or 'all' in args.report_to
args.tensorboard = 'tensorboard' in args.report_to or 'all' in args.report_to
if is_master(args):
args.tensorboard_path = os.path.join(args.logs, args.name, "tensorboard") if args.tensorboard else ''
args.checkpoint_path = os.path.join(args.logs, args.name, "checkpoints")
for dirname in [args.tensorboard_path, args.checkpoint_path]:
if dirname:
os.makedirs(dirname, exist_ok=True)
else:
args.tensorboard_path = ''
args.checkpoint_path = ''
if args.copy_codebase:
copy_codebase(args)
assert args.precision in ['amp', 'fp16', 'fp32']
if args.precision == 'fp16':
logging.warning(
'It is recommended to use AMP mixed-precision instead of FP16. '
'FP16 support needs further verification and tuning, especially for train.')
if args.horovod:
logging.info(
f'Running in horovod mode with multiple processes / nodes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
elif args.distributed:
logging.info(
f'Running in distributed mode with multiple processes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
else:
logging.info(f'Running with a single process. Device {args.device}.')
random_seed(args.seed, 0)
mean, std = get_mean_std(args)
model, preprocess_train, preprocess_val = create_model_and_transforms(
args.model,
args.pretrained,
precision=args.precision,
device=device,
jit=args.torchscript,
force_quick_gelu=args.force_quick_gelu,
pretrained_image=args.pretrained_image,
mean=mean, std=std,
inmem=hasattr(args, "inmem"),
clip_model=args.clip_model,
text_encoder_name=args.text_encoder_model_name,
)
random_seed(args.seed, args.rank)
if args.trace:
model = trace_model(model, batch_size=args.batch_size, device=device)
if args.lock_image:
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
model.lock_image_tower(
unlocked_groups=args.lock_image_unlocked_groups,
freeze_bn_stats=args.lock_image_freeze_bn_stats)
if args.grad_checkpointing:
model.set_grad_checkpointing()
if is_master(args):
logging.info("Model:")
logging.info(f"{str(model)}")
logging.info("Params:")
params_file = os.path.join(args.logs, args.name, "params.txt")
with open(params_file, "w") as f:
for name in sorted(vars(args)):
val = getattr(args, name)
logging.info(f" {name}: {val}")
f.write(f"{name}: {val}\n")
if args.distributed and not args.horovod:
if args.use_bn_sync:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.distributed_engine == 'ddp':
ddp_args = {}
if args.ddp_static_graph:
# this doesn't exist in older PyTorch, arg only added if enabled
ddp_args['static_graph'] = True
# ddp_args['find_unused_parameters'] = True if "Alt" in args.clip_model or "Dot" in args.clip_model else False # huxu
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], **ddp_args)
else:
print("--distrubted_engine should be either 'ddp'")
sys.exit(1)
# create optimizer and scaler
optimizer = None
scaler = None
if args.train_data:
assert not args.trace, 'Cannot train with traced model'
exclude = lambda n, p: p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n
include = lambda n, p: not exclude(n, p)
named_parameters = list(model.named_parameters())
gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad]
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]
optimizer = optim.AdamW(
[
{"params": gain_or_bias_params, "weight_decay": 0.},
{"params": rest_params, "weight_decay": args.wd},
],
lr=args.lr,
betas=(args.beta1, args.beta2),
eps=args.eps,
)
if args.horovod:
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
if args.precision == "amp":
scaler = GradScaler()
else:
scaler = None
# optionally resume from a checkpoint
start_epoch = 0
start_epoch_step = 0
if args.resume is not None:
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume, map_location='cpu')
if 'epoch' in checkpoint:
# resuming a train checkpoint w/ epoch and optimizer state
start_epoch = checkpoint["epoch"]
sd = checkpoint["state_dict"]
if next(iter(sd.items()))[0].startswith('_orig_mod'):
sd = {k[len('_orig_mod.'):]: v for k, v in sd.items()}
if not args.distributed and next(iter(sd.items()))[0].startswith('module'):
sd = {k[len('module.'):]: v for k, v in sd.items()}
model.load_state_dict(sd)
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
if scaler is not None and 'scaler' in checkpoint:
scaler.load_state_dict(checkpoint['scaler'])
if 'epoch_step' in checkpoint: # resuming a train checkpoint w/ epoch and optimizer state
start_epoch_step = checkpoint["epoch_step"] + 1
logging.info(f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch}, step {start_epoch_step})")
else:
start_epoch_step = 0
logging.info(f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})")
else:
# loading a bare (model only) checkpoint for fine-tune or evaluation
model.load_state_dict(checkpoint)
logging.info(f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})")
else:
logging.info("=> no checkpoint found at '{}'".format(args.resume))
# initialize datasets
data = get_data(args, (preprocess_train, preprocess_val), epoch=start_epoch)
if hasattr(args, "torchcompile") and args.torchcompile:
logging.info('Compiling model...')
try:
model = torch.compile(model)
except Exception:
logging.warn("please use PyTorch 2.0")
# create scheduler if train
scheduler = None
if 'train' in data and optimizer is not None:
total_steps = data["train"].dataloader.num_batches * args.epochs
scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps)
# determine if this worker should save logs and checkpoints. only do so if it is rank == 0
args.save_logs = args.logs and args.logs.lower() != 'none' and is_master(args)
writer = None
if args.save_logs and args.tensorboard:
assert tensorboard is not None, "Please install tensorboard."
writer = tensorboard.SummaryWriter(args.tensorboard_path)
if args.wandb and is_master(args):
assert wandb is not None, 'Please install wandb.'
logging.debug('Starting wandb.')
args.train_sz = data["train"].dataloader.num_samples
if args.val_data is not None:
args.val_sz = data["val"].dataloader.num_samples
# you will have to configure this for your project!
wandb.init(
project="open-clip",
notes=args.wandb_notes,
tags=[],
config=vars(args),
)
# define our custom x axis metric
wandb.define_metric("epoch")
# define which metrics will be plotted against it
wandb.define_metric("val/*", step_metric="epoch")
if args.debug:
wandb.watch(model, log='all')
wandb.save(params_file)
logging.debug('Finished loading wandb.')
if 'train' not in data or hasattr(args, "eval") and args.eval: # huxu: merge native/SLIP eval.
# TODO: move to below first.
from training.slip_evaluate import slip_evaluate
from open_clip import HFTokenizer
context_length = args.tokenizer_context_length
tokenizer_kwargs = {}
tokenize = HFTokenizer(
args.text_encoder_model_name,
context_length=context_length,
**tokenizer_kwargs,
)
# in case a downloaded model.
os.makedirs(args.output_dir, exist_ok=True)
slip_evaluate(args, model, preprocess_val, tokenize)
evaluate(model, data, start_epoch, args, writer)
return
epoch_step = start_epoch_step
from training.slip_evaluate import slip_evaluate
# Now create the new tokenizer...
from open_clip import HFTokenizer
context_length = args.tokenizer_context_length
tokenizer_kwargs = {}
tokenize = HFTokenizer(
args.text_encoder_model_name,
context_length=context_length,
**tokenizer_kwargs,
)
for epoch in range(start_epoch, args.epochs):
if is_master(args):
logging.info(f'Start epoch {epoch}')
if hasattr(args, "engine"):
engine = args.engine
module = train
engine_cls = getattr(module, engine)
engine_cls(model, data, epoch, epoch_step, optimizer, scaler, scheduler, args, writer)
else:
train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, writer)
epoch_step = 0 # reset for next epoch.
completed_epoch = epoch + 1
if any(v in data for v in ('val', 'imagenet-val', 'imagenet-v2')):
evaluate(model, data, completed_epoch, args, writer)
# Do downstream evaluation after every eval_freq
if (completed_epoch % args.eval_freq) == 0:
slip_evaluate(args, model, preprocess_val, tokenize, epoch)
save_checkpoint(model, optimizer, scaler, completed_epoch, args)
if hasattr(args, "eval") and args.eval and any(v in data for v in ('val', 'imagenet-val', 'imagenet-v2')):
from training.slip_evaluate import slip_evaluate
slip_evaluate(args, model, preprocess_val, tokenize)
if args.wandb and is_master(args):
wandb.finish()
def copy_codebase(args):
from shutil import copytree, ignore_patterns
new_code_path = os.path.join(args.logs, args.name, "code")
if os.path.exists(new_code_path):
print(
f"Error. Experiment already exists at {new_code_path}. Use --name to specify a new experiment."
)
return -1
print(f"Copying codebase to {new_code_path}")
current_code_path = os.path.realpath(__file__)
for _ in range(3):
current_code_path = os.path.dirname(current_code_path)
copytree(current_code_path, new_code_path, ignore=ignore_patterns('log', 'logs', 'wandb'))
print("Done copying code.")
return 1
if __name__ == "__main__":
import sys
sys.path.append("./")
from configs import search_config
config = search_config(sys.argv[1])
exp_name = sys.argv[2]
load_path = sys.argv[3]
if len(sys.argv) == 3:
config.resume = os.path.join(config.output_dir, "checkpoints", sys.argv[2])
config.pretrained = load_path
config.logs = exp_name
config.output_dir = os.path.join(config.logs, config.name)
main(config)