muzairkhattak
commited on
Commit
·
1eb3061
1
Parent(s):
a0660ee
new interface
Browse files
app.py
CHANGED
@@ -1,19 +1,18 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
-
# Switch path to root of project
|
4 |
import os
|
5 |
import sys
|
6 |
-
|
7 |
current_dir = os.getcwd()
|
8 |
src_path = os.path.join(current_dir, 'src')
|
9 |
os.chdir(src_path)
|
10 |
-
# Add src directory to sys.path
|
11 |
sys.path.append(src_path)
|
12 |
from open_clip import create_model_and_transforms
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
from open_clip import HFTokenizer
|
15 |
import torch
|
16 |
|
|
|
|
|
17 |
class create_unimed_clip_model:
|
18 |
def __init__(self, model_name):
|
19 |
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -75,62 +74,128 @@ class create_unimed_clip_model:
|
|
75 |
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
76 |
image_features = self.model.encode_image(input_image)
|
77 |
logits = (image_features @ text_features.t()).softmax(dim=-1).cpu().numpy()
|
78 |
-
return {cls_text: float(score) for cls_text, score in zip(candidate_labels, logits[0])}
|
|
|
|
|
79 |
|
80 |
pipes = {
|
81 |
"ViT/B-16": create_unimed_clip_model(model_name="ViT/B-16"),
|
82 |
"ViT/L-14@336px-base-text": create_unimed_clip_model(model_name='ViT/L-14@336px-base-text'),
|
83 |
}
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
)
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
97 |
|
98 |
def shot(image, labels_text, model_name, hypothesis_template):
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
return {single_key: res[single_key] for single_key in res.keys()}
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
]
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
iface.launch(allowed_paths=["/home/user/app/docs/sample_images"])
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
import sys
|
4 |
+
|
5 |
current_dir = os.getcwd()
|
6 |
src_path = os.path.join(current_dir, 'src')
|
7 |
os.chdir(src_path)
|
|
|
8 |
sys.path.append(src_path)
|
9 |
from open_clip import create_model_and_transforms
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
from open_clip import HFTokenizer
|
12 |
import torch
|
13 |
|
14 |
+
|
15 |
+
# Your existing create_unimed_clip_model class remains the same
|
16 |
class create_unimed_clip_model:
|
17 |
def __init__(self, model_name):
|
18 |
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
74 |
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
75 |
image_features = self.model.encode_image(input_image)
|
76 |
logits = (image_features @ text_features.t()).softmax(dim=-1).cpu().numpy()
|
77 |
+
return {hypothesis_template + " " + cls_text: float(score) for cls_text, score in zip(candidate_labels, logits[0])}
|
78 |
+
|
79 |
+
|
80 |
|
81 |
pipes = {
|
82 |
"ViT/B-16": create_unimed_clip_model(model_name="ViT/B-16"),
|
83 |
"ViT/L-14@336px-base-text": create_unimed_clip_model(model_name='ViT/L-14@336px-base-text'),
|
84 |
}
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
def reset_all():
|
89 |
+
return None, "", "ViT/B-16", "", "", {}
|
90 |
+
|
91 |
+
|
92 |
+
def add_label(label, current_labels):
|
93 |
+
if not label.strip():
|
94 |
+
return current_labels, label
|
95 |
+
labels_list = current_labels.split(",") if current_labels else []
|
96 |
+
if label not in labels_list:
|
97 |
+
labels_list.append(label.strip())
|
98 |
+
return ", ".join(labels_list), "" # Return updated labels and empty string for input
|
99 |
+
|
100 |
|
101 |
def shot(image, labels_text, model_name, hypothesis_template):
|
102 |
+
if not labels_text.strip() or not image:
|
103 |
+
return {}
|
104 |
+
labels = [label.strip() for label in labels_text.strip().split(",")]
|
105 |
+
res = pipes[model_name](
|
106 |
+
input_image=image,
|
107 |
+
candidate_labels=labels,
|
108 |
+
hypothesis_template=hypothesis_template
|
109 |
+
)
|
110 |
return {single_key: res[single_key] for single_key in res.keys()}
|
111 |
+
|
112 |
+
|
113 |
+
with gr.Blocks() as iface:
|
114 |
+
gr.Markdown("""
|
115 |
+
# Zero-shot Medical Image Classification with UniMed-CLIP
|
116 |
+
|
117 |
+
Demo for UniMed CLIP, a family of strong Medical Contrastive VLMs trained on UniMed-dataset. For more information about our project, refer to our paper and github repository.
|
118 |
+
|
119 |
+
Paper: [https://arxiv.org/abs/2412.10372](https://arxiv.org/abs/2412.10372)
|
120 |
+
Github: [https://github.com/mbzuai-oryx/UniMed-CLIP](https://github.com/mbzuai-oryx/UniMed-CLIP)
|
121 |
+
|
122 |
+
**[DEMO USAGE]** To begin with the demo, provide a picture (either upload manually, or select from the given examples) and add class labels one by one. Optionally you can also add template as a prefix to the class labels.
|
123 |
+
**[NOTE]** This demo is running on CPU and thus the response time might be a bit slower. Running it on a machine with a GPU will result in much faster predictions.
|
124 |
+
""")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column(scale=1):
|
128 |
+
image_input = gr.Image(type="pil", label="Image", width=300, height=300)
|
129 |
+
model_choice = gr.Radio(
|
130 |
+
choices=["ViT/B-16", "ViT/L-14@336px-base-text"],
|
131 |
+
label="Model",
|
132 |
+
value="ViT/B-16",
|
133 |
+
)
|
134 |
+
hypothesis_template = gr.Textbox(
|
135 |
+
label="Prompt Template",
|
136 |
+
placeholder="Optional prompt template as prefix",
|
137 |
+
value=""
|
138 |
+
)
|
139 |
+
# Label management section
|
140 |
+
label_input = gr.Textbox(label="Candidate Label", placeholder="Add a class label, one by one",)
|
141 |
+
add_btn = gr.Button("Add new Candidate Label")
|
142 |
+
|
143 |
+
with gr.Column(scale=1):
|
144 |
+
# Hidden textbox to store all labels
|
145 |
+
all_labels = gr.Textbox(label="Current Candidate Labels", interactive=False)
|
146 |
+
|
147 |
+
# Submit and Reset buttons side by side
|
148 |
+
with gr.Row():
|
149 |
+
reset_btn = gr.Button("Reset All", variant="secondary")
|
150 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
151 |
+
# Output section
|
152 |
+
output = gr.Label(label="Predicted Scores")
|
153 |
+
|
154 |
+
# Event handlers
|
155 |
+
add_btn.click(
|
156 |
+
fn=add_label,
|
157 |
+
inputs=[label_input, all_labels],
|
158 |
+
outputs=[all_labels, label_input] # Now also clearing the input
|
159 |
+
)
|
160 |
+
|
161 |
+
# Reset all inputs
|
162 |
+
reset_btn.click(
|
163 |
+
fn=reset_all,
|
164 |
+
inputs=[],
|
165 |
+
outputs=[image_input, label_input, model_choice, hypothesis_template, all_labels, output]
|
166 |
+
)
|
167 |
+
# Only trigger classification on submit
|
168 |
+
submit_btn.click(
|
169 |
+
fn=shot,
|
170 |
+
inputs=[image_input, all_labels, model_choice, hypothesis_template],
|
171 |
+
outputs=[output]
|
172 |
+
)
|
173 |
+
|
174 |
+
# Add the examples
|
175 |
+
examples = [
|
176 |
+
["../docs/sample_images/brain_MRI.jpg",
|
177 |
+
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
|
178 |
+
"ViT/B-16", ""],
|
179 |
+
["../docs/sample_images/ct_scan_right_kidney.jpg",
|
180 |
+
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
|
181 |
+
"ViT/B-16", ""],
|
182 |
+
["../docs/sample_images/tumor_histo_pathology.jpg",
|
183 |
+
"benign tissue., malignant tumor., normal cells., inflammatory tissue.",
|
184 |
+
"ViT/B-16",
|
185 |
+
"The histopathology slide indicates"],
|
186 |
+
["../docs/sample_images/retina_glaucoma.jpg",
|
187 |
+
"CT scan of the right kidney., pneumonia disease in this chest X-ray image., a brain MRI., glaucoma in fundus image., a histopathology slide showing Tumor, Cardiomegaly disease in X-ray image of the chest.",
|
188 |
+
"ViT/B-16", "A photo of a"],
|
189 |
+
["../docs/sample_images/tumor_histo_pathology.jpg",
|
190 |
+
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
|
191 |
+
"ViT/B-16", ""],
|
192 |
+
["../docs/sample_images/xray_cardiomegaly.jpg",
|
193 |
+
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
|
194 |
+
"ViT/B-16", ""],
|
195 |
+
["../docs/sample_images//xray_pneumonia.png",
|
196 |
+
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
|
197 |
+
"ViT/B-16", ""],
|
198 |
+
]
|
199 |
+
gr.Examples(examples=examples, inputs=[image_input, all_labels, model_choice, hypothesis_template])
|
200 |
|
201 |
iface.launch(allowed_paths=["/home/user/app/docs/sample_images"])
|