Spaces:
Running
on
A10G
Running
on
A10G
File size: 19,752 Bytes
d641067 eaa1b39 ff0340e eaa1b39 ff0340e eaa1b39 ff0340e aa2a2cf ff0340e d641067 ff0340e d641067 ff0340e d641067 ff0340e 2280b70 ff0340e aa2a2cf ff0340e 2280b70 ff0340e 2280b70 ff0340e 2280b70 ff0340e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import spaces
import gradio as gr
from PIL import Image
import glob
import io
import argparse
import os
import random
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np
import torch
import torch.utils.checkpoint
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms
import sys
sys.path.append("2D_Stage")
sys.path.append("3D_Stage")
from tuneavideo.models.unet_mv2d_condition import UNetMV2DConditionModel
from tuneavideo.models.unet_mv2d_ref import UNetMV2DRefModel
from tuneavideo.models.PoseGuider import PoseGuider
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.util import shifted_noise
from einops import rearrange
import PIL
from PIL import Image
from torchvision.utils import save_image
import json
import cv2
import lrm
import trimesh
from lrm.utils.config import load_config
from refine import refine
from datetime import datetime
import gradio as gr
from pygltflib import GLTF2
import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from rm_anime_bg.cli import get_mask, SCALE
import pymeshlab
from huggingface_hub import hf_hub_download, list_repo_files
repo_id = "zjpshadow/CharacterGen"
all_files = list_repo_files(repo_id, revision="main")
for file in all_files:
if os.path.exists(file):
continue
if file.startswith("2D_Stage") or file.startswith("3D_Stage"):
hf_hub_download(repo_id, file, local_dir=".")
class rm_bg_api:
def __init__(self, force_cpu: Optional[bool] = True):
session_infer_path = hf_hub_download(
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
)
providers: list[str] = ["CPUExecutionProvider"]
if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
providers = ["CUDAExecutionProvider"]
self.session_infer = rt.InferenceSession(
session_infer_path, providers=providers,
)
@spaces.GPU
def remove_background(
self,
imgs: list[np.ndarray],
alpha_min: float,
alpha_max: float,
) -> list:
process_imgs = []
for img in imgs:
img = np.array(img)
# CHANGE to RGB
if img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
mask = get_mask(self.session_infer, img)
mask[mask < alpha_min] = 0.0 # type: ignore
mask[mask > alpha_max] = 1.0 # type: ignore
img_after = (mask * img).astype(np.uint8) # type: ignore
mask = (mask * SCALE).astype(np.uint8) # type: ignore
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
mask = mask.repeat(3, axis=2)
process_imgs.append(Image.fromarray(img_after))
return process_imgs
check_min_version("0.24.0")
logger = get_logger(__name__, log_level="INFO")
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_bg_color(bg_color):
if bg_color == 'white':
bg_color = np.array([1., 1., 1.], dtype=np.float32)
elif bg_color == 'black':
bg_color = np.array([0., 0., 0.], dtype=np.float32)
elif bg_color == 'gray':
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
elif bg_color == 'random':
bg_color = np.random.rand(3)
elif isinstance(bg_color, float):
bg_color = np.array([bg_color] * 3, dtype=np.float32)
else:
raise NotImplementedError
return bg_color
def process_image(image, totensor):
if not image.mode == "RGBA":
image = image.convert("RGBA")
# Find non-transparent pixels
non_transparent = np.nonzero(np.array(image)[..., 3])
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
image = image.crop((min_x, min_y, max_x, max_y))
# paste to center
max_dim = max(image.width, image.height)
max_height = max_dim
max_width = int(max_dim / 3 * 2)
new_image = Image.new("RGBA", (max_width, max_height))
left = (max_width - image.width) // 2
top = (max_height - image.height) // 2
new_image.paste(image, (left, top))
image = new_image.resize((512, 768), resample=PIL.Image.BICUBIC)
image = np.array(image)
image = image.astype(np.float32) / 255.
assert image.shape[-1] == 4 # RGBA
alpha = image[..., 3:4]
bg_color = get_bg_color("gray")
image = image[..., :3] * alpha + bg_color * (1 - alpha)
# save image
new_image = Image.fromarray((image * 255).astype(np.uint8))
new_image.save("input.png")
return totensor(image)
class Inference2D_API:
def __init__(self,
pretrained_model_path: str,
image_encoder_path: str,
ckpt_dir: str,
validation: Dict,
local_crossattn: bool = True,
unet_from_pretrained_kwargs=None,
unet_condition_type=None,
use_pose_guider=False,
use_shifted_noise=False,
use_noise=True,
device="cuda"
):
self.validation = validation
self.use_noise = use_noise
self.use_shifted_noise = use_shifted_noise
self.unet_condition_type = unet_condition_type
image_encoder_path = image_encoder_path.replace("./", "./2D_Stage/")
ckpt_dir = ckpt_dir.replace("./", "./2D_Stage/")
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(image_encoder_path)
feature_extractor = CLIPImageProcessor()
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
if use_pose_guider:
pose_guider = PoseGuider(noise_latent_channels=4).to("cuda")
else:
pose_guider = None
unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model.bin"), map_location="cpu")
if use_pose_guider:
pose_guider_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_2.bin"), map_location="cpu")
pose_guider.load_state_dict(pose_guider_params)
else:
ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
unet.load_state_dict(unet_params)
ref_unet.load_state_dict(ref_unet_params)
weight_dtype = torch.float16
text_encoder.to(device, dtype=weight_dtype)
image_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
ref_unet.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
vae.requires_grad_(False)
unet.requires_grad_(False)
ref_unet.requires_grad_(False)
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
self.validation_pipeline = TuneAVideoPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=self.tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder,
scheduler=noise_scheduler
)
self.validation_pipeline.enable_vae_slicing()
self.validation_pipeline.set_progress_bar_config(disable=True)
self.generator = torch.Generator()
@spaces.GPU
@torch.no_grad()
def inference(self, input_image, val_width, val_height,
use_shifted_noise=False, crop=False, seed=100, timestep=20):
set_seed(seed)
totensor = transforms.ToTensor()
metas = json.load(open("./2D_Stage/material/pose.json", "r"))
cameras = []
pose_images = []
input_path = "./2D_Stage/material"
for lm in metas:
cameras.append(torch.tensor(np.array(lm[0]).reshape(4, 4).transpose(1,0)[:3, :4]).reshape(-1))
if not crop:
pose_images.append(totensor(np.asarray(Image.open(os.path.join(input_path, lm[1])).resize(
(val_height, val_width), resample=PIL.Image.BICUBIC)).astype(np.float32) / 255.))
else:
pose_image = Image.open(os.path.join(input_path, lm[1]))
crop_area = (128, 0, 640, 768)
pose_images.append(totensor(np.array(pose_image.crop(crop_area)).astype(np.float32)) / 255.)
camera_matrixs = torch.stack(cameras).unsqueeze(0).to("cuda")
pose_imgs_in = torch.stack(pose_images).to("cuda")
prompts = "high quality, best quality"
prompt_ids = self.tokenizer(
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids[0]
# (B*Nv, 3, H, W)
B = 1
weight_dtype = torch.bfloat16
imgs_in = process_image(input_image, totensor)
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
with torch.autocast("cuda", dtype=weight_dtype):
imgs_in = imgs_in.to("cuda")
# B*Nv images
out = self.validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=self.generator,
num_inference_steps=timestep,
camera_matrixs=camera_matrixs.to(weight_dtype), prompt_ids=prompt_ids,
height=val_height, width=val_width, unet_condition_type=self.unet_condition_type,
pose_guider=None, pose_image=pose_imgs_in, use_noise=self.use_noise,
use_shifted_noise=use_shifted_noise, **self.validation).videos
out = rearrange(out, "B C f H W -> (B f) C H W", f=self.validation.video_length)
image_outputs = []
for bs in range(4):
img_buf = io.BytesIO()
save_image(out[bs], img_buf, format='PNG')
img_buf.seek(0)
img = Image.open(img_buf)
image_outputs.append(img)
torch.cuda.empty_cache()
return image_outputs
def traverse(path, back_proj, smooth_iter):
mesh = trimesh.load(f"{path}/model-00.obj")
mesh.apply_transform(trimesh.transformations.rotation_matrix(np.radians(90.0), [-1, 0, 0]))
mesh.apply_transform(trimesh.transformations.rotation_matrix(np.radians(180.0), [0, 1, 0]))
cmesh = pymeshlab.Mesh(mesh.vertices, mesh.faces)
ms = pymeshlab.MeshSet()
ms.add_mesh(cmesh)
ms.apply_coord_laplacian_smoothing(stepsmoothnum=smooth_iter)
mesh.vertices = ms.current_mesh().vertex_matrix()
mesh.export(f'{path}/output.glb', file_type='glb')
image = Image.open(f"{path}/{'refined_texture_kd.jpg' if back_proj else 'texture_kd.jpg'}")
texture = np.array(image)
vertex_colors = np.zeros((mesh.vertices.shape[0], 4), dtype=np.uint8)
for vertex_index in range(len(mesh.visual.uv)):
uv = mesh.visual.uv[vertex_index]
x = int(uv[0] * (texture.shape[1] - 1))
y = int((1 - uv[1]) * (texture.shape[0] - 1))
color = texture[y, x, :3]
vertex_colors[vertex_index] = [color[0], color[1], color[2], 255]
return trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, vertex_colors=vertex_colors)
class Inference3D_API:
def __init__(self, device="cuda"):
self.cfg = load_config("3D_Stage/configs/infer.yaml", makedirs=False)
print("Loading system")
self.device = device
self.cfg.system.weights = self.cfg.system.weights.replace("./", "./3D_Stage/")
self.cfg.system.image_tokenizer.pretrained_model_name_or_path = \
self.cfg.system.image_tokenizer.pretrained_model_name_or_path.replace("./", "./3D_Stage/")
self.cfg.system.renderer.tet_dir = self.cfg.system.renderer.tet_dir.replace("./", "./3D_Stage/")
self.cfg.system.exporter.output_path = self.cfg.system.exporter.output_path.replace("./", "./3D_Stage/")
self.system = lrm.find(self.cfg.system_cls)(self.cfg.system).to(self.device)
self.system.eval()
@spaces.GPU
def process_images(self, img_input0, img_input1, img_input2, img_input3, back_proj, smooth_iter):
meta = json.load(open("./3D_Stage/material/meta.json"))
c2w_cond = [np.array(loc["transform_matrix"]) for loc in meta["locations"]]
c2w_cond = torch.from_numpy(np.stack(c2w_cond, axis=0)).float()[None].to(self.device)
# save four images
rgb_cond = []
files = [img_input0, img_input1, img_input2, img_input3]
new_images = []
for file in files:
image = np.array(file)
image = Image.fromarray(image)
if image.width != image.height:
max_dim = max(image.width, image.height)
new_image = Image.new("RGBA", (max_dim, max_dim))
left = (max_dim - image.width) // 2
top = (max_dim - image.height) // 2
new_image.paste(image, (left, top))
image = new_image
image.save("input_3D.png")
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2RGB)
rgb = cv2.resize(image, (self.cfg.data.cond_width,
self.cfg.data.cond_height)).astype(np.float32) / 255.0
new_images.append(Image.fromarray(image.astype(np.uint8)).convert("RGB"))
rgb_cond.append(rgb)
assert len(rgb_cond) == 4, "Please provide 4 images"
rgb_cond = torch.from_numpy(np.stack(rgb_cond, axis=0)).float()[None].to(self.device)
with torch.no_grad():
scene_codes = self.system({"rgb_cond": rgb_cond, "c2w_cond": c2w_cond})
exporter_output = self.system.exporter([f"{i:02d}" for i in range(rgb_cond.shape[0])], scene_codes)
save_dir = os.path.join("./3D_Stage/outputs", datetime.now().strftime("@%Y%m%d-%H%M%S"))
os.makedirs(save_dir, exist_ok=True)
self.system.set_save_dir(save_dir)
for out in exporter_output:
save_func_name = f"save_{out.save_type}"
save_func = getattr(self.system, save_func_name)
save_func(f"{out.save_name}", **out.params)
if back_proj:
refine(save_dir, new_images[1], new_images[0], new_images[3], new_images[2])
new_obj = traverse(save_dir, back_proj, smooth_iter)
new_obj.export(f'{save_dir}/output.obj', file_type='obj')
gltf = GLTF2().load(f'{save_dir}/output.glb')
for material in gltf.materials:
if material.pbrMetallicRoughness:
material.pbrMetallicRoughness.baseColorFactor = [1.0, 1.0, 1.0, 100.0]
material.pbrMetallicRoughness.metallicFactor = 0.0
material.pbrMetallicRoughness.roughnessFactor = 1.0
gltf.save(f'{save_dir}/output.glb')
return f"{save_dir}/output.obj", f"{save_dir}/output.glb"
@torch.no_grad()
def main(
):
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./2D_Stage/configs/infer.yaml")
args = parser.parse_args()
infer2dapi = Inference2D_API(**OmegaConf.load(args.config))
infer3dapi = Inference3D_API()
remove_api = rm_bg_api()
@spaces.GPU
def gen4views(image, width, height, seed, timestep, remove_bg):
if remove_bg:
image = remove_api.remove_background(
imgs=[np.array(image)],
alpha_min=0.1,
alpha_max=0.9,
)[0]
return remove_api.remove_background(
imgs=infer2dapi.inference(
image, width, height, crop=True, seed=seed, timestep=timestep
), alpha_min=0.2, alpha_max=0.9)
with gr.Blocks() as demo:
gr.Markdown("# [SIGGRAPH'24] CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Calibration")
with gr.Row():
with gr.Column(variant="panel"):
img_input = gr.Image(type="pil", label="Upload Image(without background)", image_mode="RGBA", width=768, height=512)
gr.Examples(
label="Example Images",
examples=glob.glob("./2D_Stage/material/examples/*.png"),
inputs=[img_input]
)
with gr.Row():
width_input = gr.Number(label="Width", value=512)
height_input = gr.Number(label="Height", value=768)
seed_input = gr.Number(label="Seed", value=2333)
remove_bg = gr.Checkbox(label="Remove Background (with algorithm)", value=True)
with gr.Column(variant="panel"):
timestep = gr.Slider(minimum=10, maximum=70, step=1, value=40, label="Timesteps")
button1 = gr.Button(value="Generate 4 Views")
with gr.Row():
img_input0 = gr.Image(type="pil", label="Back Image", image_mode="RGBA", width=256, height=384)
img_input1 = gr.Image(type="pil", label="Front Image", image_mode="RGBA", width=256, height=384)
with gr.Row():
img_input2 = gr.Image(type="pil", label="Right Image", image_mode="RGBA", width=256, height=384)
img_input3 = gr.Image(type="pil", label="Left Image", image_mode="RGBA", width=256, height=384)
with gr.Column(variant="panel"):
smooth_iter = gr.Slider(minimum=0, maximum=5, step=1, value=3, label="Laplacian Smoothing Iterations")
with gr.Row():
back_proj = gr.Checkbox(label="Back Projection")
button2 = gr.Button(value="Generate 3D Mesh")
# output_dir = gr.Textbox(label="Output Directory")
with gr.Row():
with gr.Tab("GLB"):
output_model_glb = gr.Model3D( label="Output Model (GLB Format)", height=512)
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D( label="Output Model (OBJ Format)")
gr.Markdown("Note: The model shown here's texture is mapped to vertex. Download to get correct results.")
button1.click(
fn=gen4views,
inputs=[img_input, width_input, height_input, seed_input, timestep, remove_bg],
outputs=[img_input2, img_input0, img_input3, img_input1]
)
button2.click(
infer3dapi.process_images,
inputs=[img_input0, img_input1, img_input2, img_input3, back_proj, smooth_iter],
outputs=[output_model_obj, output_model_glb]
)
demo.launch()
if __name__ == "__main__":
main() |