Spaces:
Running
on
A10G
Running
on
A10G
File size: 5,611 Bytes
ff0340e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from fastapi import FastAPI, File, UploadFile
import aiofiles
import uvicorn, os, io
import cv2, json, math
import numpy as np
from PIL import Image
from typing import List
from fastapi.middleware.cors import CORSMiddleware
origins = [
"*"
]
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
vertices_list = ['leftUpperArm',
'rightUpperArm',
'leftLowerArm',
'rightLowerArm',
'leftHand',
'rightHand',
'leftUpperLeg',
'rightUpperLeg',
'leftLowerLeg',
'rightLowerLeg',
'leftFoot',
'rightFoot',
'head',
'upperChest']
def process_depth_file(file_data):
image = Image.open(io.BytesIO(file_data))
if image.mode != 'RGBA':
raise ValueError("Image is not in RGBA format")
data = np.array(image)
R = data[:, :, 0]
G = data[:, :, 1]
B = data[:, :, 2]
A = data[:, :, 3]
depth = (R + G / 256.0 + B / (256.0 * 256.0))
depth[A == 0] = 5.0
return depth
vertices_list = ['leftUpperArm',
'rightUpperArm',
'leftLowerArm',
'rightLowerArm',
'leftHand',
'rightHand',
'leftUpperLeg',
'rightUpperLeg',
'leftLowerLeg',
'rightLowerLeg',
'leftFoot',
'rightFoot',
'head',
'hips',
'spine']
def backproject_to_3d(base_dir):
for fn in os.listdir(base_dir):
if fn.endswith(".json"):
pose_file = open(os.path.join(base_dir, fn), "r")
pose_dict = json.load(pose_file)
vertices = []
joints_name = []
for node_name in vertices_list:
joints_name.append(node_name)
v = pose_dict['node_array'][node_name]
vertices.append([v["world_position"]['x'], v["world_position"]['y'], v["world_position"]['z'], 1.0])
vertices = np.array(vertices)
chest_v = vertices[12] * 2 / 3 + vertices[14] / 3
vertices = np.concatenate([vertices[:13], [chest_v]], axis=0)
vertices = vertices[[12, 13, 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11]]
focal_length = 256 / np.tan(40 / 2 / 180 * np.pi)
ext = np.array(pose_dict["extrinsicMatrix"]["elements"]).reshape(4,4)
ext = np.linalg.inv(ext)
vertices = vertices @ ext
camera_v = vertices[...,:3] / vertices[...,3:]
camera_v = camera_v[...,:2] / camera_v[...,2:] * focal_length
camera_v += 256
camera_v /= 512
camera_v[:,0] = 1 - camera_v[:,0]
canvas = np.zeros((768, 768, 3), dtype=np.uint8)
#canvas = cv2.imread(os.path.join(base_dir, fn.replace(".json", "_rgb.png")))
draw_bodypose(canvas, camera_v)
cv2.imwrite(os.path.join(base_dir, fn.replace(".json", "_pose.png")), cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB))
def draw_bodypose(canvas: np.ndarray, keypoints) -> np.ndarray:
H, W, C = canvas.shape
stickwidth = 4
limbSeq = [
[2, 3], [2, 6], [3, 4], [4, 5],
[6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14],
[2, 1],
]
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
for (k1_index, k2_index), color in zip(limbSeq, colors):
if k1_index-1 >= len(keypoints) or k2_index -1>= len(keypoints):
continue
keypoint1 = keypoints[k1_index - 1]
keypoint2 = keypoints[k2_index - 1]
if keypoint1 is None or keypoint2 is None:
continue
Y = np.array([keypoint1[0], keypoint2[0]]) * float(W)
X = np.array([keypoint1[1], keypoint2[1]]) * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color])
for keypoint, color in zip(keypoints, colors):
if keypoint is None:
continue
x, y = keypoint
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, color, thickness=-1)
return canvas
count = 0
@app.post("/upload/")
async def create_upload_files(files: List[UploadFile] = File(...)):
global count
count += 1
print(count)
for file in files:
object_name = file.filename.split("_")[0]
folder = f"E:/new_render/{object_name}"
if not os.path.exists(folder):
os.makedirs(folder)
file_data = await file.read()
if(file.filename.split('_')[-1].split('.')[0] == "depth"):
depth = process_depth_file(file_data)
cv2.imwrite(f"{folder}/{file.filename}", depth)
new_path = f"{folder}/{file.filename}"
numpy_path = new_path.replace(".png", ".npz")
np.savez_compressed(numpy_path, depth)
else:
with open(f"{folder}/{file.filename}", "wb") as buffer:
buffer.write(file_data)
backproject_to_3d(folder)
if __name__ == "__main__":
uvicorn.run(app, host="127.0.0.1", port=17070) |