pookiefoof's picture
Update hf
ff0340e
import gradio as gr
from PIL import Image
import glob
import io
import argparse
import inspect
import os
import random
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np
import torch
import torch.utils.checkpoint
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms
from tuneavideo.models.unet_mv2d_condition import UNetMV2DConditionModel
from tuneavideo.models.unet_mv2d_ref import UNetMV2DRefModel
from tuneavideo.models.PoseGuider import PoseGuider
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.util import shifted_noise
from einops import rearrange
import PIL
from PIL import Image
from torchvision.utils import save_image
import json
import cv2
import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from rm_anime_bg.cli import get_mask, SCALE
from huggingface_hub import hf_hub_download, list_repo_files
repo_id = "zjpshadow/CharacterGen"
all_files = list_repo_files(repo_id, revision="main")
for file in all_files:
if os.path.exists("../" + file):
continue
if file.startswith("2D_Stage"):
hf_hub_download(repo_id, file, local_dir="../")
class rm_bg_api:
def __init__(self, force_cpu: Optional[bool] = True):
session_infer_path = hf_hub_download(
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
)
providers: list[str] = ["CPUExecutionProvider"]
if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
providers = ["CUDAExecutionProvider"]
self.session_infer = rt.InferenceSession(
session_infer_path, providers=providers,
)
def remove_background(
self,
imgs: list[np.ndarray],
alpha_min: float,
alpha_max: float,
) -> list:
process_imgs = []
for img in imgs:
# CHANGE to RGB
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
mask = get_mask(self.session_infer, img)
mask[mask < alpha_min] = 0.0 # type: ignore
mask[mask > alpha_max] = 1.0 # type: ignore
img_after = (mask * img + SCALE * (1 - mask)).astype(np.uint8) # type: ignore
mask = (mask * SCALE).astype(np.uint8) # type: ignore
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
mask = mask.repeat(3, axis=2)
process_imgs.append(Image.fromarray(img_after))
return process_imgs
check_min_version("0.24.0")
logger = get_logger(__name__, log_level="INFO")
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_bg_color(bg_color):
if bg_color == 'white':
bg_color = np.array([1., 1., 1.], dtype=np.float32)
elif bg_color == 'black':
bg_color = np.array([0., 0., 0.], dtype=np.float32)
elif bg_color == 'gray':
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
elif bg_color == 'random':
bg_color = np.random.rand(3)
elif isinstance(bg_color, float):
bg_color = np.array([bg_color] * 3, dtype=np.float32)
else:
raise NotImplementedError
return bg_color
def process_image(image, totensor):
if not image.mode == "RGBA":
image = image.convert("RGBA")
# Find non-transparent pixels
non_transparent = np.nonzero(np.array(image)[..., 3])
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
image = image.crop((min_x, min_y, max_x, max_y))
# paste to center
max_dim = max(image.width, image.height)
max_height = max_dim
max_width = int(max_dim / 3 * 2)
new_image = Image.new("RGBA", (max_width, max_height))
left = (max_width - image.width) // 2
top = (max_height - image.height) // 2
new_image.paste(image, (left, top))
image = new_image.resize((512, 768), resample=PIL.Image.BICUBIC)
image = np.array(image)
image = image.astype(np.float32) / 255.
assert image.shape[-1] == 4 # RGBA
alpha = image[..., 3:4]
bg_color = get_bg_color("gray")
image = image[..., :3] * alpha + bg_color * (1 - alpha)
# save image
# new_image = Image.fromarray((image * 255).astype(np.uint8))
# new_image.save("input.png")
return totensor(image)
class Inference_API:
def __init__(self):
self.validation_pipeline = None
@torch.no_grad()
def inference(self, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder, pretrained_model_path, generator, validation, val_width, val_height, unet_condition_type,
pose_guider=None, use_noise=True, use_shifted_noise=False, noise_d=256, crop=False, seed=100, timestep=20):
set_seed(seed)
# Get the validation pipeline
if self.validation_pipeline is None:
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
if use_shifted_noise:
print(f"enable shifted noise for {val_height} to {noise_d}")
betas = shifted_noise(noise_scheduler.betas, image_d=val_height, noise_d=noise_d)
noise_scheduler.betas = betas
noise_scheduler.alphas = 1 - betas
noise_scheduler.alphas_cumprod = torch.cumprod(noise_scheduler.alphas, dim=0)
self.validation_pipeline = TuneAVideoPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder,
scheduler=noise_scheduler
)
self.validation_pipeline.enable_vae_slicing()
self.validation_pipeline.set_progress_bar_config(disable=True)
totensor = transforms.ToTensor()
metas = json.load(open("./material/pose.json", "r"))
cameras = []
pose_images = []
input_path = "./material"
for lm in metas:
cameras.append(torch.tensor(np.array(lm[0]).reshape(4, 4).transpose(1,0)[:3, :4]).reshape(-1))
if not crop:
pose_images.append(totensor(np.asarray(Image.open(os.path.join(input_path, lm[1])).resize(
(val_height, val_width), resample=PIL.Image.BICUBIC)).astype(np.float32) / 255.))
else:
pose_image = Image.open(os.path.join(input_path, lm[1]))
crop_area = (128, 0, 640, 768)
pose_images.append(totensor(np.array(pose_image.crop(crop_area)).astype(np.float32)) / 255.)
camera_matrixs = torch.stack(cameras).unsqueeze(0).to("cuda")
pose_imgs_in = torch.stack(pose_images).to("cuda")
prompts = "high quality, best quality"
prompt_ids = tokenizer(
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
return_tensors="pt"
).input_ids[0]
# (B*Nv, 3, H, W)
B = 1
weight_dtype = torch.bfloat16
imgs_in = process_image(input_image, totensor)
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
with torch.autocast("cuda", dtype=weight_dtype):
imgs_in = imgs_in.to("cuda")
# B*Nv images
out = self.validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator,
num_inference_steps=timestep,
camera_matrixs=camera_matrixs.to(weight_dtype), prompt_ids=prompt_ids,
height=val_height, width=val_width, unet_condition_type=unet_condition_type,
pose_guider=None, pose_image=pose_imgs_in, use_noise=use_noise,
use_shifted_noise=use_shifted_noise, **validation).videos
out = rearrange(out, "B C f H W -> (B f) C H W", f=validation.video_length)
image_outputs = []
for bs in range(4):
img_buf = io.BytesIO()
save_image(out[bs], img_buf, format='PNG')
img_buf.seek(0)
img = Image.open(img_buf)
image_outputs.append(img)
torch.cuda.empty_cache()
return image_outputs
@torch.no_grad()
def main(
pretrained_model_path: str,
image_encoder_path: str,
ckpt_dir: str,
validation: Dict,
local_crossattn: bool = True,
unet_from_pretrained_kwargs=None,
unet_condition_type=None,
use_pose_guider=False,
use_noise=True,
use_shifted_noise=False,
noise_d=256
):
*_, config = inspect.getargvalues(inspect.currentframe())
device = "cuda"
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(image_encoder_path)
feature_extractor = CLIPImageProcessor()
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
if use_pose_guider:
pose_guider = PoseGuider(noise_latent_channels=4).to("cuda")
else:
pose_guider = None
unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model.bin"), map_location="cpu")
if use_pose_guider:
pose_guider_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_2.bin"), map_location="cpu")
pose_guider.load_state_dict(pose_guider_params)
else:
ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
unet.load_state_dict(unet_params)
ref_unet.load_state_dict(ref_unet_params)
weight_dtype = torch.float16
text_encoder.to(device, dtype=weight_dtype)
image_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
ref_unet.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
vae.requires_grad_(False)
unet.requires_grad_(False)
ref_unet.requires_grad_(False)
generator = torch.Generator(device="cuda")
inferapi = Inference_API()
remove_api = rm_bg_api()
def gen4views(image, width, height, seed, timestep, remove_bg):
if remove_bg:
image = remove_api.remove_background(
imgs=[np.array(image)],
alpha_min=0.1,
alpha_max=0.9,
)[0]
return inferapi.inference(
image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder, pretrained_model_path,
generator, validation, width, height, unet_condition_type,
pose_guider=pose_guider, use_noise=use_noise, use_shifted_noise=use_shifted_noise, noise_d=noise_d,
crop=True, seed=seed, timestep=timestep
)
with gr.Blocks() as demo:
gr.Markdown("# [SIGGRAPH'24] CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Calibration")
gr.Markdown("# 2D Stage: One Image to Four Views of Character Image")
gr.Markdown("**Please Upload the Image without background, and the pictures uploaded should preferably be full-body frontal photos.**")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Upload Image(without background)", image_mode="RGBA", width=768, height=512)
gr.Examples(
label="Example Images",
examples=glob.glob("./material/examples/*.png"),
inputs=[img_input]
)
with gr.Row():
width_input = gr.Number(label="Width", value=512)
height_input = gr.Number(label="Height", value=768)
seed_input = gr.Number(label="Seed", value=2333)
remove_bg = gr.Checkbox(label="Remove Background (with algorithm)", value=False)
timestep = gr.Slider(minimum=10, maximum=70, step=1, value=40, label="Timesteps")
with gr.Column():
button = gr.Button(value="Generate")
output = gr.Gallery(label="4 views of Character Image")
button.click(
fn=gen4views,
inputs=[img_input, width_input, height_input, seed_input, timestep, remove_bg],
outputs=[output]
)
demo.launch()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/infer.yaml")
args = parser.parse_args()
main(**OmegaConf.load(args.config))