import spaces import gradio as gr from PIL import Image import glob import io import argparse import os import random from typing import Dict, Optional, Tuple from omegaconf import OmegaConf import numpy as np import torch import torch.utils.checkpoint from accelerate.logging import get_logger from accelerate.utils import set_seed from diffusers import AutoencoderKL, DDIMScheduler from diffusers.utils import check_min_version from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection from torchvision import transforms import sys sys.path.append("2D_Stage") sys.path.append("3D_Stage") from tuneavideo.models.unet_mv2d_condition import UNetMV2DConditionModel from tuneavideo.models.unet_mv2d_ref import UNetMV2DRefModel from tuneavideo.models.PoseGuider import PoseGuider from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.util import shifted_noise from einops import rearrange import PIL from PIL import Image from torchvision.utils import save_image import json import cv2 import lrm import trimesh from lrm.utils.config import load_config from refine import refine from datetime import datetime import gradio as gr from pygltflib import GLTF2 import onnxruntime as rt from huggingface_hub.file_download import hf_hub_download from rm_anime_bg.cli import get_mask, SCALE import pymeshlab from huggingface_hub import hf_hub_download, list_repo_files repo_id = "zjpshadow/CharacterGen" all_files = list_repo_files(repo_id, revision="main") for file in all_files: if os.path.exists(file): continue if file.startswith("2D_Stage") or file.startswith("3D_Stage"): hf_hub_download(repo_id, file, local_dir=".") class rm_bg_api: def __init__(self, force_cpu: Optional[bool] = True): session_infer_path = hf_hub_download( repo_id="skytnt/anime-seg", filename="isnetis.onnx", ) providers: list[str] = ["CPUExecutionProvider"] if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers(): providers = ["CUDAExecutionProvider"] self.session_infer = rt.InferenceSession( session_infer_path, providers=providers, ) def remove_background( self, imgs: list[np.ndarray], alpha_min: float, alpha_max: float, ) -> list: process_imgs = [] for img in imgs: img = np.array(img) # CHANGE to RGB if img.shape[-1] == 4: img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB) mask = get_mask(self.session_infer, img) mask[mask < alpha_min] = 0.0 # type: ignore mask[mask > alpha_max] = 1.0 # type: ignore img_after = (mask * img).astype(np.uint8) # type: ignore mask = (mask * SCALE).astype(np.uint8) # type: ignore img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8) mask = mask.repeat(3, axis=2) process_imgs.append(Image.fromarray(img_after)) return process_imgs check_min_version("0.24.0") logger = get_logger(__name__, log_level="INFO") def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def get_bg_color(bg_color): if bg_color == 'white': bg_color = np.array([1., 1., 1.], dtype=np.float32) elif bg_color == 'black': bg_color = np.array([0., 0., 0.], dtype=np.float32) elif bg_color == 'gray': bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32) elif bg_color == 'random': bg_color = np.random.rand(3) elif isinstance(bg_color, float): bg_color = np.array([bg_color] * 3, dtype=np.float32) else: raise NotImplementedError return bg_color def process_image(image, totensor): if not image.mode == "RGBA": image = image.convert("RGBA") # Find non-transparent pixels non_transparent = np.nonzero(np.array(image)[..., 3]) min_x, max_x = non_transparent[1].min(), non_transparent[1].max() min_y, max_y = non_transparent[0].min(), non_transparent[0].max() image = image.crop((min_x, min_y, max_x, max_y)) # paste to center max_dim = max(image.width, image.height) max_height = max_dim max_width = int(max_dim / 3 * 2) new_image = Image.new("RGBA", (max_width, max_height)) left = (max_width - image.width) // 2 top = (max_height - image.height) // 2 new_image.paste(image, (left, top)) image = new_image.resize((512, 768), resample=PIL.Image.BICUBIC) image = np.array(image) image = image.astype(np.float32) / 255. assert image.shape[-1] == 4 # RGBA alpha = image[..., 3:4] bg_color = get_bg_color("gray") image = image[..., :3] * alpha + bg_color * (1 - alpha) # save image new_image = Image.fromarray((image * 255).astype(np.uint8)) new_image.save("input.png") return totensor(image) class Inference2D_API: def __init__(self, pretrained_model_path: str, image_encoder_path: str, ckpt_dir: str, validation: Dict, local_crossattn: bool = True, unet_from_pretrained_kwargs=None, unet_condition_type=None, use_pose_guider=False, use_shifted_noise=False, use_noise=True, device="cuda" ): self.validation = validation self.use_noise = use_noise self.use_shifted_noise = use_shifted_noise self.unet_condition_type = unet_condition_type image_encoder_path = image_encoder_path.replace("./", "./2D_Stage/") ckpt_dir = ckpt_dir.replace("./", "./2D_Stage/") self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") image_encoder = CLIPVisionModelWithProjection.from_pretrained(image_encoder_path) feature_extractor = CLIPImageProcessor() vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs) ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs) if use_pose_guider: pose_guider = PoseGuider(noise_latent_channels=4).to("cuda") else: pose_guider = None unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model.bin"), map_location="cpu") if use_pose_guider: pose_guider_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu") ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_2.bin"), map_location="cpu") pose_guider.load_state_dict(pose_guider_params) else: ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu") unet.load_state_dict(unet_params) ref_unet.load_state_dict(ref_unet_params) weight_dtype = torch.float16 text_encoder.to(device, dtype=weight_dtype) image_encoder.to(device, dtype=weight_dtype) vae.to(device, dtype=weight_dtype) ref_unet.to(device, dtype=weight_dtype) unet.to(device, dtype=weight_dtype) vae.requires_grad_(False) unet.requires_grad_(False) ref_unet.requires_grad_(False) noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") self.validation_pipeline = TuneAVideoPipeline( vae=vae, text_encoder=text_encoder, tokenizer=self.tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder, scheduler=noise_scheduler ) self.validation_pipeline.enable_vae_slicing() self.validation_pipeline.set_progress_bar_config(disable=True) self.generator = torch.Generator() @spaces.GPU @torch.no_grad() def inference(self, input_image, val_width, val_height, use_shifted_noise=False, crop=False, seed=100, timestep=20): set_seed(seed) totensor = transforms.ToTensor() metas = json.load(open("./2D_Stage/material/pose.json", "r")) cameras = [] pose_images = [] input_path = "./2D_Stage/material" for lm in metas: cameras.append(torch.tensor(np.array(lm[0]).reshape(4, 4).transpose(1,0)[:3, :4]).reshape(-1)) if not crop: pose_images.append(totensor(np.asarray(Image.open(os.path.join(input_path, lm[1])).resize( (val_height, val_width), resample=PIL.Image.BICUBIC)).astype(np.float32) / 255.)) else: pose_image = Image.open(os.path.join(input_path, lm[1])) crop_area = (128, 0, 640, 768) pose_images.append(totensor(np.array(pose_image.crop(crop_area)).astype(np.float32)) / 255.) camera_matrixs = torch.stack(cameras).unsqueeze(0).to("cuda") pose_imgs_in = torch.stack(pose_images).to("cuda") prompts = "high quality, best quality" prompt_ids = self.tokenizer( prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids[0] # (B*Nv, 3, H, W) B = 1 weight_dtype = torch.bfloat16 imgs_in = process_image(input_image, totensor) imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W") with torch.autocast("cuda", dtype=weight_dtype): imgs_in = imgs_in.to("cuda") # B*Nv images out = self.validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=self.generator, num_inference_steps=timestep, camera_matrixs=camera_matrixs.to(weight_dtype), prompt_ids=prompt_ids, height=val_height, width=val_width, unet_condition_type=self.unet_condition_type, pose_guider=None, pose_image=pose_imgs_in, use_noise=self.use_noise, use_shifted_noise=use_shifted_noise, **self.validation).videos out = rearrange(out, "B C f H W -> (B f) C H W", f=self.validation.video_length) image_outputs = [] for bs in range(4): img_buf = io.BytesIO() save_image(out[bs], img_buf, format='PNG') img_buf.seek(0) img = Image.open(img_buf) image_outputs.append(img) torch.cuda.empty_cache() return image_outputs def traverse(path, back_proj, smooth_iter): mesh = trimesh.load(f"{path}/model-00.obj") mesh.apply_transform(trimesh.transformations.rotation_matrix(np.radians(90.0), [-1, 0, 0])) mesh.apply_transform(trimesh.transformations.rotation_matrix(np.radians(180.0), [0, 1, 0])) cmesh = pymeshlab.Mesh(mesh.vertices, mesh.faces) ms = pymeshlab.MeshSet() ms.add_mesh(cmesh) ms.apply_coord_laplacian_smoothing(stepsmoothnum=smooth_iter) mesh.vertices = ms.current_mesh().vertex_matrix() mesh.export(f'{path}/output.glb', file_type='glb') image = Image.open(f"{path}/{'refined_texture_kd.jpg' if back_proj else 'texture_kd.jpg'}") texture = np.array(image) vertex_colors = np.zeros((mesh.vertices.shape[0], 4), dtype=np.uint8) for vertex_index in range(len(mesh.visual.uv)): uv = mesh.visual.uv[vertex_index] x = int(uv[0] * (texture.shape[1] - 1)) y = int((1 - uv[1]) * (texture.shape[0] - 1)) color = texture[y, x, :3] vertex_colors[vertex_index] = [color[0], color[1], color[2], 255] return trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, vertex_colors=vertex_colors) class Inference3D_API: def __init__(self, device="cuda"): self.cfg = load_config("3D_Stage/configs/infer.yaml", makedirs=False) print("Loading system") self.device = device self.cfg.system.weights = self.cfg.system.weights.replace("./", "./3D_Stage/") self.cfg.system.image_tokenizer.pretrained_model_name_or_path = \ self.cfg.system.image_tokenizer.pretrained_model_name_or_path.replace("./", "./3D_Stage/") self.cfg.system.renderer.tet_dir = self.cfg.system.renderer.tet_dir.replace("./", "./3D_Stage/") self.cfg.system.exporter.output_path = self.cfg.system.exporter.output_path.replace("./", "./3D_Stage/") self.system = lrm.find(self.cfg.system_cls)(self.cfg.system).to(self.device) self.system.eval() @spaces.GPU def process_images(self, img_input0, img_input1, img_input2, img_input3, back_proj, smooth_iter): meta = json.load(open("./3D_Stage/material/meta.json")) c2w_cond = [np.array(loc["transform_matrix"]) for loc in meta["locations"]] c2w_cond = torch.from_numpy(np.stack(c2w_cond, axis=0)).float()[None].to(self.device) # save four images rgb_cond = [] files = [img_input0, img_input1, img_input2, img_input3] new_images = [] for file in files: image = np.array(file) image = Image.fromarray(image) if image.width != image.height: max_dim = max(image.width, image.height) new_image = Image.new("RGBA", (max_dim, max_dim)) left = (max_dim - image.width) // 2 top = (max_dim - image.height) // 2 new_image.paste(image, (left, top)) image = new_image image.save("input_3D.png") image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2RGB) rgb = cv2.resize(image, (self.cfg.data.cond_width, self.cfg.data.cond_height)).astype(np.float32) / 255.0 new_images.append(Image.fromarray(image.astype(np.uint8)).convert("RGB")) rgb_cond.append(rgb) assert len(rgb_cond) == 4, "Please provide 4 images" rgb_cond = torch.from_numpy(np.stack(rgb_cond, axis=0)).float()[None].to(self.device) with torch.no_grad(): scene_codes = self.system({"rgb_cond": rgb_cond, "c2w_cond": c2w_cond}) exporter_output = self.system.exporter([f"{i:02d}" for i in range(rgb_cond.shape[0])], scene_codes) save_dir = os.path.join("./3D_Stage/outputs", datetime.now().strftime("@%Y%m%d-%H%M%S")) os.makedirs(save_dir, exist_ok=True) self.system.set_save_dir(save_dir) for out in exporter_output: save_func_name = f"save_{out.save_type}" save_func = getattr(self.system, save_func_name) save_func(f"{out.save_name}", **out.params) if back_proj: refine(save_dir, new_images[1], new_images[0], new_images[3], new_images[2]) new_obj = traverse(save_dir, back_proj, smooth_iter) new_obj.export(f'{save_dir}/output.obj', file_type='obj') gltf = GLTF2().load(f'{save_dir}/output.glb') for material in gltf.materials: if material.pbrMetallicRoughness: material.pbrMetallicRoughness.baseColorFactor = [1.0, 1.0, 1.0, 100.0] material.pbrMetallicRoughness.metallicFactor = 0.0 material.pbrMetallicRoughness.roughnessFactor = 1.0 gltf.save(f'{save_dir}/output.glb') return f"{save_dir}/output.obj", f"{save_dir}/output.glb" @torch.no_grad() def main( ): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="./2D_Stage/configs/infer.yaml") args = parser.parse_args() infer2dapi = Inference2D_API(**OmegaConf.load(args.config)) infer3dapi = Inference3D_API() remove_api = rm_bg_api() def gen4views(image, width, height, seed, timestep, remove_bg): if remove_bg: image = remove_api.remove_background( imgs=[np.array(image)], alpha_min=0.1, alpha_max=0.9, )[0] return remove_api.remove_background( imgs=infer2dapi.inference( image, width, height, crop=True, seed=seed, timestep=timestep ), alpha_min=0.2, alpha_max=0.9) with gr.Blocks() as demo: gr.Markdown("# [SIGGRAPH'24] CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Calibration") with gr.Row(): with gr.Column(variant="panel"): img_input = gr.Image(type="pil", label="Upload Image(without background)", image_mode="RGBA", width=768, height=512) gr.Examples( label="Example Images", examples=glob.glob("./2D_Stage/material/examples/*.png"), inputs=[img_input] ) with gr.Row(): width_input = gr.Number(label="Width", value=512) height_input = gr.Number(label="Height", value=768) seed_input = gr.Number(label="Seed", value=2333) remove_bg = gr.Checkbox(label="Remove Background (with algorithm)", value=True) with gr.Column(variant="panel"): timestep = gr.Slider(minimum=10, maximum=70, step=1, value=40, label="Timesteps") button1 = gr.Button(value="Generate 4 Views") with gr.Row(): img_input0 = gr.Image(type="pil", label="Back Image", image_mode="RGBA", width=256, height=384) img_input1 = gr.Image(type="pil", label="Front Image", image_mode="RGBA", width=256, height=384) with gr.Row(): img_input2 = gr.Image(type="pil", label="Right Image", image_mode="RGBA", width=256, height=384) img_input3 = gr.Image(type="pil", label="Left Image", image_mode="RGBA", width=256, height=384) with gr.Column(variant="panel"): smooth_iter = gr.Slider(minimum=0, maximum=5, step=1, value=3, label="Laplacian Smoothing Iterations") with gr.Row(): back_proj = gr.Checkbox(label="Back Projection") button2 = gr.Button(value="Generate 3D Mesh") # output_dir = gr.Textbox(label="Output Directory") with gr.Row(): with gr.Tab("GLB"): output_model_glb = gr.Model3D( label="Output Model (GLB Format)", height=512) gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") with gr.Tab("OBJ"): output_model_obj = gr.Model3D( label="Output Model (OBJ Format)") gr.Markdown("Note: The model shown here's texture is mapped to vertex. Download to get correct results.") button1.click( fn=gen4views, inputs=[img_input, width_input, height_input, seed_input, timestep, remove_bg], outputs=[img_input2, img_input0, img_input3, img_input1] ) button2.click( infer3dapi.process_images, inputs=[img_input0, img_input1, img_input2, img_input3, back_proj, smooth_iter], outputs=[output_model_obj, output_model_glb] ) demo.launch() if __name__ == "__main__": main()