Spaces:
Runtime error
Runtime error
from flask import Flask, render_template, request, jsonify, send_file | |
from PIL import Image | |
import torch | |
from transformers import ( | |
BlipProcessor, | |
BlipForConditionalGeneration, | |
AutoTokenizer | |
) | |
import os | |
from gtts import gTTS | |
import tempfile | |
from IndicTransToolkit import IndicProcessor | |
app = Flask(__name__) | |
# Initialize models | |
if not os.path.exists('IndicTransToolkit'): | |
os.system('git clone https://github.com/VarunGumma/IndicTransToolkit') | |
os.system('cd IndicTransToolkit && python3 -m pip install --editable ./') | |
# Global variables for models | |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda" if torch.cuda.is_available() else "cpu") | |
# Cache for translated results | |
translation_cache = {} | |
def generate_caption(image): | |
inputs = blip_processor(image, "image of", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
with torch.no_grad(): | |
generated_ids = blip_model.generate(**inputs) | |
caption = blip_processor.decode(generated_ids[0], skip_special_tokens=True) | |
return caption | |
def translate_caption(caption, target_languages): | |
model_name = "ai4bharat/indictrans2-en-indic-1B" | |
tokenizer_IT2 = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model_IT2 = AutoModelForSeq2SeqTranslation.from_pretrained(model_name, trust_remote_code=True) | |
model_IT2 = torch.quantization.quantize_dynamic(model_IT2, {torch.nn.Linear}, dtype=torch.qint8) | |
ip = IndicProcessor(inference=True) | |
src_lang = "eng_Latn" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
model_IT2.to(DEVICE) | |
translations = {} | |
input_sentences = [caption] | |
for tgt_lang in target_languages: | |
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang) | |
inputs = tokenizer_IT2(batch, truncation=True, padding="longest", return_tensors="pt").to(DEVICE) | |
with torch.no_grad(): | |
generated_tokens = model_IT2.generate( | |
**inputs, | |
use_cache=True, | |
min_length=0, | |
max_length=256, | |
num_beams=5, | |
num_return_sequences=1, | |
) | |
with tokenizer_IT2.as_target_tokenizer(): | |
generated_tokens = tokenizer_IT2.batch_decode( | |
generated_tokens.detach().cpu().tolist(), | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True | |
) | |
translated_texts = ip.postprocess_batch(generated_tokens, lang=tgt_lang) | |
translations[tgt_lang] = translated_texts[0] | |
return translations | |
def generate_audio_gtts(text, lang_code): | |
# Create audio directory if it doesn't exist | |
os.makedirs('static/audio', exist_ok=True) | |
# Generate temporary file name | |
temp_filename = f"static/audio/audio_{hash(text)}_{lang_code}.mp3" | |
# Generate audio file | |
tts = gTTS(text=text, lang=lang_code) | |
tts.save(temp_filename) | |
return temp_filename | |
def index(): | |
return render_template('index.html') | |
def process_image(): | |
if 'image' not in request.files: | |
return jsonify({'error': 'No image uploaded'}), 400 | |
image_file = request.files['image'] | |
target_languages = request.form.getlist('languages[]') | |
# Process image | |
image = Image.open(image_file).convert('RGB') | |
caption = generate_caption(image) | |
# Generate translations | |
translations = translate_caption(caption, target_languages) | |
# Generate audio files | |
audio_files = {} | |
lang_codes = { | |
"hin_Deva": "hi", | |
"guj_Gujr": "gu", | |
"urd_Arab": "ur", | |
"mar_Deva": "mr" | |
} | |
for lang in target_languages: | |
lang_code = lang_codes.get(lang, "en") | |
audio_path = generate_audio_gtts(translations[lang], lang_code) | |
audio_files[lang] = audio_path.replace('static/', '') | |
return jsonify({ | |
'caption': caption, | |
'translations': translations, | |
'audio_files': audio_files | |
}) | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=7860) |