Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,871 Bytes
1cfe513 9e9b867 1c47184 9e9b867 1c47184 9e9b867 58e272a 50ef49c 0223744 58e272a 2317674 0223744 9e9b867 0cdbe8f 9e9b867 9a66aa0 9e9b867 58e272a 9e9b867 50ef49c 9e9b867 0223744 58e272a 50ef49c 58e272a 50ef49c 58e272a 0223744 50ef49c 58e272a 9e9b867 0223744 9e9b867 0223744 85ff42c 58e272a 0223744 50ef49c 58e272a 0223744 58e272a 0223744 58e272a 85ff42c 58e272a 50ef49c 0223744 58e272a 85ff42c e354b27 85ff42c 6360699 85ff42c 6360699 a7a5221 0223744 a7a5221 9e9b867 0223744 2317674 e533ecf 2317674 0223744 2317674 0223744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import random
from datasets import load_dataset
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
from typing import List, Tuple
import json
from datetime import datetime
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ
torch.cuda.empty_cache()
# ํ๊ฒฝ ๋ณ์ ์ค์
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]
# ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# ์ํคํผ๋์ ๋ฐ์ดํฐ์
๋ก๋
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna")
print("Wikipedia dataset loaded:", wiki_dataset)
# TF-IDF ๋ฒกํฐ๋ผ์ด์ ์ด๊ธฐํ ๋ฐ ํ์ต
print("TF-IDF ๋ฒกํฐํ ์์...")
questions = wiki_dataset['train']['question'][:10000] # ์ฒ์ 10000๊ฐ๋ง ์ฌ์ฉ
vectorizer = TfidfVectorizer(max_features=1000)
question_vectors = vectorizer.fit_transform(questions)
print("TF-IDF ๋ฒกํฐํ ์๋ฃ")
class ChatHistory:
def __init__(self):
self.history = []
self.history_file = "/tmp/chat_history.json"
self.load_history()
def add_conversation(self, user_msg: str, assistant_msg: str):
conversation = {
"timestamp": datetime.now().isoformat(),
"messages": [
{"role": "user", "content": user_msg},
{"role": "assistant", "content": assistant_msg}
]
}
self.history.append(conversation)
self.save_history()
def format_for_display(self):
formatted = []
for conv in self.history:
formatted.append([
conv["messages"][0]["content"],
conv["messages"][1]["content"]
])
return formatted
def get_messages_for_api(self):
messages = []
for conv in self.history:
messages.extend([
{"role": "user", "content": conv["messages"][0]["content"]},
{"role": "assistant", "content": conv["messages"][1]["content"]}
])
return messages
def clear_history(self):
self.history = []
self.save_history()
def save_history(self):
try:
with open(self.history_file, 'w', encoding='utf-8') as f:
json.dump(self.history, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"ํ์คํ ๋ฆฌ ์ ์ฅ ์คํจ: {e}")
def load_history(self):
try:
if os.path.exists(self.history_file):
with open(self.history_file, 'r', encoding='utf-8') as f:
self.history = json.load(f)
except Exception as e:
print(f"ํ์คํ ๋ฆฌ ๋ก๋ ์คํจ: {e}")
self.history = []
# ์ ์ญ ChatHistory ์ธ์คํด์ค ์์ฑ
chat_history = ChatHistory()
def find_relevant_context(query, top_k=3):
# ์ฟผ๋ฆฌ ๋ฒกํฐํ
query_vector = vectorizer.transform([query])
# ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ
similarities = (query_vector * question_vectors.T).toarray()[0]
# ๊ฐ์ฅ ์ ์ฌํ ์ง๋ฌธ๋ค์ ์ธ๋ฑ์ค
top_indices = np.argsort(similarities)[-top_k:][::-1]
# ๊ด๋ จ ์ปจํ
์คํธ ์ถ์ถ
relevant_contexts = []
for idx in top_indices:
if similarities[idx] > 0:
relevant_contexts.append({
'question': questions[idx],
'answer': wiki_dataset['train']['answer'][idx],
'similarity': similarities[idx]
})
return relevant_contexts
def analyze_file_content(content, file_type):
"""Analyze file content and return structural summary"""
if file_type in ['parquet', 'csv']:
try:
lines = content.split('\n')
header = lines[0]
columns = header.count('|') - 1
rows = len(lines) - 3
return f"๐ ๋ฐ์ดํฐ์
๊ตฌ์กฐ: {columns}๊ฐ ์ปฌ๋ผ, {rows}๊ฐ ๋ฐ์ดํฐ"
except:
return "โ ๋ฐ์ดํฐ์
๊ตฌ์กฐ ๋ถ์ ์คํจ"
lines = content.split('\n')
total_lines = len(lines)
non_empty_lines = len([line for line in lines if line.strip()])
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
functions = len([line for line in lines if 'def ' in line])
classes = len([line for line in lines if 'class ' in line])
imports = len([line for line in lines if 'import ' in line or 'from ' in line])
return f"๐ป ์ฝ๋ ๊ตฌ์กฐ: {total_lines}์ค (ํจ์: {functions}, ํด๋์ค: {classes}, ์ํฌํธ: {imports})"
paragraphs = content.count('\n\n') + 1
words = len(content.split())
return f"๐ ๋ฌธ์ ๊ตฌ์กฐ: {total_lines}์ค, {paragraphs}๋จ๋ฝ, ์ฝ {words}๋จ์ด"
def read_uploaded_file(file):
if file is None:
return "", ""
try:
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext == '.parquet':
df = pd.read_parquet(file.name, engine='pyarrow')
content = df.head(10).to_markdown(index=False)
return content, "parquet"
elif file_ext == '.csv':
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
df = pd.read_csv(file.name, encoding=encoding)
content = f"๐ ๋ฐ์ดํฐ ๋ฏธ๋ฆฌ๋ณด๊ธฐ:\n{df.head(10).to_markdown(index=False)}\n\n"
content += f"\n๐ ๋ฐ์ดํฐ ์ ๋ณด:\n"
content += f"- ์ ์ฒด ํ ์: {len(df)}\n"
content += f"- ์ ์ฒด ์ด ์: {len(df.columns)}\n"
content += f"- ์ปฌ๋ผ ๋ชฉ๋ก: {', '.join(df.columns)}\n"
content += f"\n๐ ์ปฌ๋ผ ๋ฐ์ดํฐ ํ์
:\n"
for col, dtype in df.dtypes.items():
content += f"- {col}: {dtype}\n"
null_counts = df.isnull().sum()
if null_counts.any():
content += f"\nโ ๏ธ ๊ฒฐ์ธก์น:\n"
for col, null_count in null_counts[null_counts > 0].items():
content += f"- {col}: {null_count}๊ฐ ๋๋ฝ\n"
return content, "csv"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"โ ์ง์๋๋ ์ธ์ฝ๋ฉ์ผ๋ก ํ์ผ์ ์ฝ์ ์ ์์ต๋๋ค ({', '.join(encodings)})")
else:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
with open(file.name, 'r', encoding=encoding) as f:
content = f.read()
return content, "text"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"โ ์ง์๋๋ ์ธ์ฝ๋ฉ์ผ๋ก ํ์ผ์ ์ฝ์ ์ ์์ต๋๋ค ({', '.join(encodings)})")
except Exception as e:
return f"โ ํ์ผ ์ฝ๊ธฐ ์ค๋ฅ: {str(e)}", "error"
@spaces.GPU
def stream_chat(message: str, history: list, uploaded_file, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
# ํ์ผ ์
๋ก๋ ์ฒ๋ฆฌ
file_context = ""
if uploaded_file:
content, file_type = read_uploaded_file(uploaded_file)
if content:
file_context = f"\n\n์
๋ก๋๋ ํ์ผ ๋ด์ฉ:\n```\n{content}\n```"
# ๊ด๋ จ ์ปจํ
์คํธ ์ฐพ๊ธฐ
relevant_contexts = find_relevant_context(message)
wiki_context = "\n\n๊ด๋ จ ์ํคํผ๋์ ์ ๋ณด:\n"
for ctx in relevant_contexts:
wiki_context += f"Q: {ctx['question']}\nA: {ctx['answer']}\n์ ์ฌ๋: {ctx['similarity']:.3f}\n\n"
# ๋ํ ํ์คํ ๋ฆฌ ๊ตฌ์ฑ
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer}
])
# ์ต์ข
ํ๋กฌํํธ ๊ตฌ์ฑ
final_message = file_context + wiki_context + "\nํ์ฌ ์ง๋ฌธ: " + message
conversation.append({"role": "user", "content": final_message})
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
top_k=top_k,
top_p=top_p,
repetition_penalty=penalty,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=[255001],
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
CSS = """
/* ์ ์ฒด ํ์ด์ง ์คํ์ผ๋ง */
body {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
min-height: 100vh;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
/* ... (์ด์ ์ CSS ์คํ์ผ ์ ์ง) ... */
"""
with gr.Blocks(css=CSS) as demo:
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(
label="๋ฉ์์ง ์
๋ ฅ",
show_label=False,
placeholder="๋ฌด์์ด๋ ๋ฌผ์ด๋ณด์ธ์... ๐ญ",
container=False
)
with gr.Row():
clear = gr.ClearButton([msg, chatbot], value="๋ํ๋ด์ฉ ์ง์ฐ๊ธฐ")
send = gr.Button("๋ณด๋ด๊ธฐ ๐ค")
with gr.Column(scale=1):
gr.Markdown("### ํ์ผ ์
๋ก๋ ๐")
file_upload = gr.File(
label="ํ์ผ ์ ํ",
file_types=["text", ".csv", ".parquet"],
type="filepath"
)
with gr.Accordion("๊ณ ๊ธ ์ค์ โ๏ธ", open=False):
temperature = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="์จ๋",
)
max_new_tokens = gr.Slider(
minimum=128,
maximum=8000,
step=1,
value=4000,
label="์ต๋ ํ ํฐ ์",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="์์ ํ๋ฅ ",
)
top_k = gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="์์ K",
)
penalty = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="๋ฐ๋ณต ํจ๋ํฐ",
)
# ์์ ์ง๋ฌธ
gr.Examples(
examples=[
["ํ๊ตญ์ ์ ํต ์ ๊ธฐ์ 24์ ๊ธฐ์ ๋ํด ์์ธํ ์ค๋ช
ํด์ฃผ์ธ์."],
["์ฐ๋ฆฌ๋๋ผ ์ ํต ์์ ์ค ๊ฑด๊ฐ์ ์ข์ ๋ฐํจ์์ 5๊ฐ์ง๋ฅผ ์ถ์ฒํ๊ณ ๊ทธ ํจ๋ฅ์ ์ค๋ช
ํด์ฃผ์ธ์."],
["ํ๊ตญ์ ๋ํ์ ์ธ ์ฐ๋ค์ ์๊ฐํ๊ณ , ๊ฐ ์ฐ์ ํน์ง๊ณผ ๋ฑ์ฐ ์ฝ์ค๋ฅผ ์ถ์ฒํด์ฃผ์ธ์."],
["์ฌ๋ฌผ๋์ด์ ์
๊ธฐ ๊ตฌ์ฑ๊ณผ ์ฅ๋จ์ ๋ํด ์ด๋ณด์๋ ์ดํดํ๊ธฐ ์ฝ๊ฒ ์ค๋ช
ํด์ฃผ์ธ์."],
["ํ๊ตญ์ ์ ํต ๊ฑด์ถ๋ฌผ์ ๋ด๊ธด ๊ณผํ์ ์๋ฆฌ๋ฅผ ํ๋์ ๊ด์ ์์ ๋ถ์ํด์ฃผ์ธ์."],
["์กฐ์ ์๋ ๊ณผ๊ฑฐ ์ํ ์ ๋๋ฅผ ํ๋์ ์
์ ์ ๋์ ๋น๊ตํ์ฌ ์ค๋ช
ํด์ฃผ์ธ์."],
["ํ๊ตญ์ 4๋ ๊ถ๊ถ์ ๋น๊ตํ์ฌ ๊ฐ๊ฐ์ ํน์ง๊ณผ ์ญ์ฌ์ ์๋ฏธ๋ฅผ ์ค๋ช
ํด์ฃผ์ธ์."],
["ํ๊ตญ์ ์ ํต ๋์ด๋ฅผ ํ๋์ ์ผ๋ก ์ฌํด์ํ์ฌ ์ค๋ด์์ ํ ์ ์๋ ๋ฐฉ๋ฒ์ ์ ์ํด์ฃผ์ธ์."],
["ํ๊ธ ์ฐฝ์ ๊ณผ์ ๊ณผ ํ๋ฏผ์ ์์ ๊ณผํ์ ์๋ฆฌ๋ฅผ ์์ธํ ์ค๋ช
ํด์ฃผ์ธ์."],
["ํ๊ตญ์ ์ ํต ์ฐจ ๋ฌธํ์ ๋ํด ์ค๋ช
ํ๊ณ , ๊ณ์ ๋ณ๋ก ์ด์ธ๋ฆฌ๋ ์ ํต์ฐจ๋ฅผ ์ถ์ฒํด์ฃผ์ธ์."],
["ํ๊ตญ์ ์ ํต ์๋ณต์ธ ํ๋ณต์ ๊ตฌ์กฐ์ ํน์ง์ ๊ณผํ์ , ๋ฏธํ์ ๊ด์ ์์ ๋ถ์ํด์ฃผ์ธ์."],
["ํ๊ตญ์ ์ ํต ๊ฐ์ฅ ๊ตฌ์กฐ๋ฅผ ๊ธฐํ์ ํ๊ฒฝ ๊ด์ ์์ ๋ถ์ํ๊ณ , ํ๋ ๊ฑด์ถ์ ์ ์ฉํ ์ ์๋ ์์๋ฅผ ์ ์ํด์ฃผ์ธ์."]
],
inputs=msg,
)
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
msg.submit(
stream_chat,
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
outputs=[msg, chatbot]
)
send.click(
stream_chat,
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
outputs=[msg, chatbot]
)
# ํ์ผ ์
๋ก๋์ ์๋ ๋ถ์
file_upload.change(
lambda: "ํ์ผ ๋ถ์์ ์์ํฉ๋๋ค...",
outputs=msg
).then(
stream_chat,
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
outputs=[msg, chatbot]
)
if __name__ == "__main__":
demo.launch() |