File size: 9,021 Bytes
1cfe513
9e9b867
1c47184
9e9b867
 
1c47184
9e9b867
 
58e272a
 
 
 
 
2317674
9e9b867
0cdbe8f
9e9b867
 
 
9a66aa0
 
 
 
 
 
 
9e9b867
58e272a
 
 
9e9b867
9a66aa0
 
 
 
 
 
 
 
58e272a
 
9a66aa0
 
 
 
 
 
 
 
 
9e9b867
58e272a
 
9a66aa0
58e272a
 
 
9a66aa0
58e272a
 
 
 
 
 
 
 
 
 
 
9a66aa0
 
58e272a
 
 
9e9b867
 
 
85ff42c
 
58e272a
 
 
 
 
 
 
 
85ff42c
 
58e272a
 
 
 
 
 
 
 
85ff42c
 
 
 
e354b27
 
85ff42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6360699
85ff42c
 
 
 
6360699
85ff42c
9e9b867
a7a5221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9b867
 
 
 
 
 
85ff42c
9e9b867
 
 
 
 
85ff42c
9e9b867
 
 
 
 
6360699
9e9b867
6360699
9e9b867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317674
9e9b867
 
 
 
 
 
 
 
 
 
 
2317674
9e9b867
2317674
 
 
9e9b867
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import random
from datasets import load_dataset
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# GPU ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ
torch.cuda.empty_cache()

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]

# ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# ์œ„ํ‚คํ”ผ๋””์•„ ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋“œ
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna")
print("Wikipedia dataset loaded:", wiki_dataset)

def get_embeddings(text, model, tokenizer):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
    with torch.no_grad():
        outputs = model(**inputs)
    # ๋งˆ์ง€๋ง‰ ํžˆ๋“  ์Šคํ…Œ์ดํŠธ์˜ ํ‰๊ท ์„ ์ž„๋ฒ ๋”ฉ์œผ๋กœ ์‚ฌ์šฉ
    embeddings = outputs.last_hidden_state.mean(dim=1)
    return embeddings

# ๋ฐ์ดํ„ฐ์…‹์˜ ์งˆ๋ฌธ๋“ค์„ ์ž„๋ฒ ๋”ฉ
questions = wiki_dataset['train']['question'][:10000]  # ์ฒ˜์Œ 10000๊ฐœ๋งŒ ์‚ฌ์šฉ
question_embeddings = []
batch_size = 32

for i in range(0, len(questions), batch_size):
    batch = questions[i:i+batch_size]
    batch_embeddings = get_embeddings(batch, model, tokenizer)
    question_embeddings.append(batch_embeddings)

question_embeddings = torch.cat(question_embeddings, dim=0)

def find_relevant_context(query, top_k=3):
    # ์ฟผ๋ฆฌ ์ž„๋ฒ ๋”ฉ
    query_embedding = get_embeddings(query, model, tokenizer)
    
    # ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
    similarities = cosine_similarity(
        query_embedding.cpu().numpy(),
        question_embeddings.cpu().numpy()
    )[0]
    
    # ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ์งˆ๋ฌธ๋“ค์˜ ์ธ๋ฑ์Šค
    top_indices = np.argsort(similarities)[-top_k:][::-1]
    
    # ๊ด€๋ จ ์ปจํ…์ŠคํŠธ ์ถ”์ถœ
    relevant_contexts = []
    for idx in top_indices:
        relevant_contexts.append({
            'question': questions[idx],
            'answer': wiki_dataset['train']['answer'][idx],
            'similarity': similarities[idx]
        })
    
    return relevant_contexts

@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    
    # RAG: ๊ด€๋ จ ์ปจํ…์ŠคํŠธ ์ฐพ๊ธฐ
    relevant_contexts = find_relevant_context(message)
    context_prompt = "\n\n๊ด€๋ จ ์ฐธ๊ณ  ์ •๋ณด:\n"
    for ctx in relevant_contexts:
        context_prompt += f"Q: {ctx['question']}\nA: {ctx['answer']}\n\n"
    
    # ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ ๊ตฌ์„ฑ
    conversation = []
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer}
        ])
    
    # ์ปจํ…์ŠคํŠธ๋ฅผ ํฌํ•จํ•œ ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ ๊ตฌ์„ฑ
    final_message = context_prompt + "\nํ˜„์žฌ ์งˆ๋ฌธ: " + message
    conversation.append({"role": "user", "content": final_message})

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(input_ids, return_tensors="pt").to(0)
    

    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        inputs, 
        streamer=streamer,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=penalty,
        max_new_tokens=max_new_tokens, 
        do_sample=True, 
        temperature=temperature,
        eos_token_id=[255001],
    )
    
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

chatbot = gr.Chatbot(height=500)

CSS = """
/* ์ „์ฒด ํŽ˜์ด์ง€ ์Šคํƒ€์ผ๋ง */
body {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    min-height: 100vh;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
/* ๋ฉ”์ธ ์ปจํ…Œ์ด๋„ˆ */
.container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 2rem;
    background: rgba(255, 255, 255, 0.95);
    border-radius: 20px;
    box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
    backdrop-filter: blur(10px);
    transform: perspective(1000px) translateZ(0);
    transition: all 0.3s ease;
}
/* ์ œ๋ชฉ ์Šคํƒ€์ผ๋ง */
h1 {
    color: #2d3436;
    font-size: 2.5rem;
    text-align: center;
    margin-bottom: 2rem;
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
    transform: perspective(1000px) translateZ(20px);
}
h3 {
    text-align: center;
    color: #2d3436;
    font-size: 1.5rem;
    margin: 1rem 0;
}
/* ์ฑ„ํŒ…๋ฐ•์Šค ์Šคํƒ€์ผ๋ง */
.chatbox {
    background: white;
    border-radius: 15px;
    box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15);
    backdrop-filter: blur(4px);
    border: 1px solid rgba(255, 255, 255, 0.18);
    padding: 1rem;
    margin: 1rem 0;
    transform: translateZ(0);
    transition: all 0.3s ease;
}
/* ๋ฉ”์‹œ์ง€ ์Šคํƒ€์ผ๋ง */
.chatbox .messages .message.user {
    background: linear-gradient(145deg, #e1f5fe, #bbdefb);
    border-radius: 15px;
    padding: 1rem;
    margin: 0.5rem;
    box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.05);
    transform: translateZ(10px);
    animation: messageIn 0.3s ease-out;
}
.chatbox .messages .message.bot {
    background: linear-gradient(145deg, #f5f5f5, #eeeeee);
    border-radius: 15px;
    padding: 1rem;
    margin: 0.5rem;
    box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.05);
    transform: translateZ(10px);
    animation: messageIn 0.3s ease-out;
}
/* ๋ฒ„ํŠผ ์Šคํƒ€์ผ๋ง */
.duplicate-button {
    background: linear-gradient(145deg, #24292e, #1a1e22) !important;
    color: white !important;
    border-radius: 100vh !important;
    padding: 0.8rem 1.5rem !important;
    box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.2) !important;
    transition: all 0.3s ease !important;
    border: none !important;
    cursor: pointer !important;
}
.duplicate-button:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 5px 15px rgba(0, 0, 0, 0.3) !important;
}
/* ์ž…๋ ฅ ํ•„๋“œ ์Šคํƒ€์ผ๋ง */
"""

with gr.Blocks(css=CSS) as demo:
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        theme="soft",
        additional_inputs_accordion=gr.Accordion(label="โš™๏ธ ์˜ต์…˜์…˜", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="์˜จ๋„",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8000,
                step=1,
                value=4000,
                label="์ตœ๋Œ€ ํ† ํฐ ์ˆ˜",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="์ƒ์œ„ ํ™•๋ฅ ",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="์ƒ์œ„ K",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="๋ฐ˜๋ณต ํŒจ๋„ํ‹ฐ",
                render=False,
            ),
        ],
        examples=[
            ["์•„์ด์˜ ์—ฌ๋ฆ„๋ฐฉํ•™ ๊ณผํ•™ ํ”„๋กœ์ ํŠธ๋ฅผ ์œ„ํ•œ 5๊ฐ€์ง€ ์•„์ด๋””์–ด๋ฅผ ์ฃผ์„ธ์š”."],
            ["๋งˆํฌ๋‹ค์šด์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ธŒ๋ ˆ์ดํฌ์•„์›ƒ ๊ฒŒ์ž„ ๋งŒ๋“ค๊ธฐ ํŠœํ† ๋ฆฌ์–ผ์„ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”."],
            ["์ดˆ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ ์ฃผ์ธ๊ณต์˜ SF ์ด์•ผ๊ธฐ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”. ๋ณต์„  ์„ค์ •, ํ…Œ๋งˆ์™€ ๋กœ๊ทธ๋ผ์ธ์„ ๋…ผ๋ฆฌ์ ์œผ๋กœ ์‚ฌ์šฉํ•ด์ฃผ์„ธ์š”"],
            ["์•„์ด์˜ ์—ฌ๋ฆ„๋ฐฉํ•™ ์ž์œ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ 5๊ฐ€์ง€ ์•„์ด๋””์–ด์™€ ๊ทธ ๋ฐฉ๋ฒ•์„ ๊ฐ„๋‹จํžˆ ์•Œ๋ ค์ฃผ์„ธ์š”."],
            ["ํผ์ฆ ๊ฒŒ์ž„ ์Šคํฌ๋ฆฝํŠธ ์ž‘์„ฑ์„ ์œ„ํ•œ ์กฐ์–ธ ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค"],
            ["๋งˆํฌ๋‹ค์šด ํ˜•์‹์œผ๋กœ ๋ธ”๋ก ๊นจ๊ธฐ ๊ฒŒ์ž„ ์ œ์ž‘ ๊ต๊ณผ์„œ๋ฅผ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”"],
            ["์‹ค๋ฒ„ ๅทๆŸณ๋ฅผ ์ƒ๊ฐํ•ด์ฃผ์„ธ์š”"],
            ["์ผ๋ณธ์–ด ๊ด€์šฉ๊ตฌ, ์†๋‹ด์— ๊ด€ํ•œ ์‹œํ—˜ ๋ฌธ์ œ๋ฅผ ๋งŒ๋“ค์–ด์ฃผ์„ธ์š”"],
            ["๋„๋ผ์—๋ชฝ์˜ ๋“ฑ์žฅ์ธ๋ฌผ์„ ์•Œ๋ ค์ฃผ์„ธ์š”"],
            ["์˜ค์ฝ”๋…ธ๋ฏธ์•ผํ‚ค ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ๋ ค์ฃผ์„ธ์š”"],
            ["๋ฌธ์ œ 9.11๊ณผ 9.9 ์ค‘ ์–ด๋Š ๊ฒƒ์ด ๋” ํฐ๊ฐ€์š”? step by step์œผ๋กœ ๋…ผ๋ฆฌ์ ์œผ๋กœ ์ƒ๊ฐํ•ด์ฃผ์„ธ์š”."],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()