File size: 26,771 Bytes
1cfe513
9e9b867
1c47184
9e9b867
3c893d2
9e9b867
1c47184
9e9b867
 
58e272a
50ef49c
0223744
 
 
 
3c893d2
 
 
 
 
 
 
 
 
 
 
 
 
 
2317674
0223744
9e9b867
0cdbe8f
9e9b867
 
 
3c893d2
9a66aa0
9e9b867
58e272a
 
 
9e9b867
50ef49c
 
 
 
 
 
9e9b867
0223744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e272a
50ef49c
 
58e272a
 
50ef49c
58e272a
 
 
 
 
 
 
0223744
50ef49c
 
 
 
 
58e272a
 
9e9b867
fcd720a
 
 
0223744
 
 
 
 
 
 
 
fcd720a
0223744
fcd720a
0223744
 
 
 
 
 
 
 
 
fcd720a
0223744
 
 
fcd720a
6360699
6adfca3
 
 
 
 
 
fcd720a
6adfca3
3c893d2
 
 
 
fcd720a
 
 
 
 
3c893d2
fcd720a
3c893d2
 
 
fcd720a
3c893d2
 
fcd720a
3c893d2
 
fcd720a
3c893d2
 
 
fcd720a
3c893d2
 
 
 
 
fcd720a
3c893d2
fcd720a
3c893d2
 
 
 
 
fcd720a
 
 
3c893d2
 
fcd720a
3c893d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcd720a
 
 
 
3c893d2
fcd720a
 
 
3c893d2
 
fcd720a
3c893d2
fcd720a
3c893d2
 
 
fcd720a
3c893d2
fcd720a
6adfca3
 
 
 
 
fcd720a
 
 
 
 
3c893d2
fcd720a
3c893d2
 
 
fcd720a
3c893d2
 
fcd720a
6adfca3
3c893d2
fcd720a
3c893d2
6adfca3
 
 
fcd720a
3c893d2
fcd720a
3c893d2
6adfca3
 
 
 
 
fcd720a
3c893d2
 
 
 
 
 
fcd720a
3c893d2
 
 
 
6adfca3
fcd720a
 
 
 
 
3c893d2
 
 
6adfca3
fcd720a
 
 
 
 
3c893d2
 
6adfca3
 
fcd720a
6adfca3
 
fcd720a
6adfca3
b03b509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a0841
b03b509
 
c9a0841
fd896d4
b03b509
c9a0841
 
 
fd896d4
 
b03b509
c9a0841
b03b509
0b0ac38
 
 
 
 
 
 
 
 
 
 
 
 
6e53936
c9a0841
0b0ac38
6e53936
 
0b0ac38
fd896d4
b03b509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1dbfb
c9a0841
7f1dbfb
 
 
c9a0841
7f1dbfb
 
 
 
 
 
c9a0841
7f1dbfb
c9a0841
 
0b0ac38
 
 
 
 
7f1dbfb
 
fd896d4
6d46b35
 
7f1dbfb
0b0ac38
 
 
 
 
b03b509
 
3c893d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e468070
 
3c893d2
 
e468070
3c893d2
 
 
e468070
 
3c893d2
e468070
 
 
 
 
 
 
 
3c893d2
e468070
 
 
 
3c893d2
 
 
 
 
 
 
 
 
 
 
 
e468070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c893d2
e468070
3c893d2
 
 
 
 
 
 
 
 
 
e468070
 
 
 
 
 
 
 
 
3c893d2
e468070
 
 
 
 
3c893d2
 
 
e468070
 
 
 
 
 
 
 
3c893d2
 
 
e468070
 
 
3c893d2
 
e468070
 
 
 
7773cb1
 
3c893d2
 
5f4c99e
d6a3ccb
 
3c893d2
 
c53bcba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c893d2
c53bcba
 
d6a3ccb
c53bcba
 
 
 
7f1dbfb
c53bcba
 
d6a3ccb
c53bcba
 
 
3c893d2
 
 
 
 
 
 
c53bcba
d6a3ccb
c53bcba
 
 
 
d6a3ccb
c53bcba
 
 
d6a3ccb
0b0ac38
c53bcba
 
 
d6a3ccb
0b0ac38
c53bcba
 
d6a3ccb
b03b509
c53bcba
 
d6a3ccb
c53bcba
 
 
 
d6a3ccb
 
 
 
c53bcba
 
 
 
3c893d2
 
 
d6a3ccb
3c893d2
d6a3ccb
c53bcba
 
 
 
 
e468070
c53bcba
 
 
 
 
e468070
 
 
 
 
 
 
 
 
 
 
 
d6a3ccb
3c893d2
 
 
 
 
 
7773cb1
2317674
 
7773cb1
6d46b35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

import os
from threading import Thread
import random
from datasets import load_dataset
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
from typing import List, Tuple
import json
from datetime import datetime
import pyarrow.parquet as pq
import pypdf
import io
import pyarrow.parquet as pq
from pdfminer.high_level import extract_text
from pdfminer.layout import LAParams
from tabulate import tabulate  # tabulate ์ถ”๊ฐ€
import platform
import subprocess
import pytesseract
from pdf2image import convert_from_path

# ์ „์—ญ ๋ณ€์ˆ˜ ์ถ”๊ฐ€
current_file_context = None

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]

model = None  # ์ „์—ญ ๋ณ€์ˆ˜๋กœ ์„ ์–ธ
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# ์œ„ํ‚คํ”ผ๋””์•„ ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋“œ
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna")
print("Wikipedia dataset loaded:", wiki_dataset)

# TF-IDF ๋ฒกํ„ฐ๋ผ์ด์ € ์ดˆ๊ธฐํ™” ๋ฐ ํ•™์Šต
print("TF-IDF ๋ฒกํ„ฐํ™” ์‹œ์ž‘...")
questions = wiki_dataset['train']['question'][:10000]  # ์ฒ˜์Œ 10000๊ฐœ๋งŒ ์‚ฌ์šฉ
vectorizer = TfidfVectorizer(max_features=1000)
question_vectors = vectorizer.fit_transform(questions)
print("TF-IDF ๋ฒกํ„ฐํ™” ์™„๋ฃŒ")

class ChatHistory:
    def __init__(self):
        self.history = []
        self.history_file = "/tmp/chat_history.json"
        self.load_history()

    def add_conversation(self, user_msg: str, assistant_msg: str):
        conversation = {
            "timestamp": datetime.now().isoformat(),
            "messages": [
                {"role": "user", "content": user_msg},
                {"role": "assistant", "content": assistant_msg}
            ]
        }
        self.history.append(conversation)
        self.save_history()

    def format_for_display(self):
        formatted = []
        for conv in self.history:
            formatted.append([
                conv["messages"][0]["content"],
                conv["messages"][1]["content"]
            ])
        return formatted

    def get_messages_for_api(self):
        messages = []
        for conv in self.history:
            messages.extend([
                {"role": "user", "content": conv["messages"][0]["content"]},
                {"role": "assistant", "content": conv["messages"][1]["content"]}
            ])
        return messages

    def clear_history(self):
        self.history = []
        self.save_history()

    def save_history(self):
        try:
            with open(self.history_file, 'w', encoding='utf-8') as f:
                json.dump(self.history, f, ensure_ascii=False, indent=2)
        except Exception as e:
            print(f"ํžˆ์Šคํ† ๋ฆฌ ์ €์žฅ ์‹คํŒจ: {e}")

    def load_history(self):
        try:
            if os.path.exists(self.history_file):
                with open(self.history_file, 'r', encoding='utf-8') as f:
                    self.history = json.load(f)
        except Exception as e:
            print(f"ํžˆ์Šคํ† ๋ฆฌ ๋กœ๋“œ ์‹คํŒจ: {e}")
            self.history = []

# ์ „์—ญ ChatHistory ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ
chat_history = ChatHistory()

def find_relevant_context(query, top_k=3):
    # ์ฟผ๋ฆฌ ๋ฒกํ„ฐํ™”
    query_vector = vectorizer.transform([query])
    
    # ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
    similarities = (query_vector * question_vectors.T).toarray()[0]
    
    # ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ์งˆ๋ฌธ๋“ค์˜ ์ธ๋ฑ์Šค
    top_indices = np.argsort(similarities)[-top_k:][::-1]
    
    # ๊ด€๋ จ ์ปจํ…์ŠคํŠธ ์ถ”์ถœ
    relevant_contexts = []
    for idx in top_indices:
        if similarities[idx] > 0:
            relevant_contexts.append({
                'question': questions[idx],
                'answer': wiki_dataset['train']['answer'][idx],
                'similarity': similarities[idx]
            })
    
    return relevant_contexts

def init_msg():
    return "Analyzing file..."

def analyze_file_content(content, file_type):
    """Analyze file content and return structural summary"""
    if file_type in ['parquet', 'csv']:
        try:
            lines = content.split('\n')
            header = lines[0]
            columns = header.count('|') - 1
            rows = len(lines) - 3
            return f"๐Ÿ“Š Dataset Structure: {columns} columns, {rows} rows"
        except:
            return "โŒ Failed to analyze dataset structure"
    
    lines = content.split('\n')
    total_lines = len(lines)
    non_empty_lines = len([line for line in lines if line.strip()])
    
    if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
        functions = len([line for line in lines if 'def ' in line])
        classes = len([line for line in lines if 'class ' in line])
        imports = len([line for line in lines if 'import ' in line or 'from ' in line])
        return f"๐Ÿ’ป Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})"
    
    paragraphs = content.count('\n\n') + 1
    words = len(content.split())
    return f"๐Ÿ“ Document Structure: {total_lines} lines, {paragraphs} paragraphs, approximately {words} words"

def read_uploaded_file(file):
    if file is None:
        return "", ""
    try:
        file_ext = os.path.splitext(file.name)[1].lower()
        
        # Parquet file processing
        if file_ext == '.parquet':
            try:
                table = pq.read_table(file.name)
                df = table.to_pandas()
                
                content = f"๐Ÿ“Š Parquet File Analysis:\n\n"
                content += f"1. Basic Information:\n"
                content += f"- Total Rows: {len(df):,}\n"
                content += f"- Total Columns: {len(df.columns)}\n"
                content += f"- Memory Usage: {df.memory_usage(deep=True).sum() / 1024 / 1024:.2f} MB\n\n"
                
                content += f"2. Column Information:\n"
                for col in df.columns:
                    content += f"- {col} ({df[col].dtype})\n"
                
                content += f"\n3. Data Preview:\n"
                content += tabulate(df.head(5), headers='keys', tablefmt='pipe', showindex=False)
                
                content += f"\n\n4. Missing Values:\n"
                null_counts = df.isnull().sum()
                for col, count in null_counts[null_counts > 0].items():
                    content += f"- {col}: {count:,} ({count/len(df)*100:.1f}%)\n"
                
                numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns
                if len(numeric_cols) > 0:
                    content += f"\n5. Numeric Column Statistics:\n"
                    stats_df = df[numeric_cols].describe()
                    content += tabulate(stats_df, headers='keys', tablefmt='pipe')
                
                return content, "parquet"
            except Exception as e:
                return f"Error reading Parquet file: {str(e)}", "error"
        
        # PDF file processing
        if file_ext == '.pdf':
            try:
                pdf_reader = pypdf.PdfReader(file.name)
                total_pages = len(pdf_reader.pages)
                
                content = f"๐Ÿ“‘ PDF Document Analysis:\n\n"
                content += f"1. Basic Information:\n"
                content += f"- Total Pages: {total_pages}\n"
                
                if pdf_reader.metadata:
                    content += "\n2. Metadata:\n"
                    for key, value in pdf_reader.metadata.items():
                        if value and str(key).startswith('/'):
                            content += f"- {key[1:]}: {value}\n"
                
                try:
                    text = extract_text(
                        file.name,
                        laparams=LAParams(
                            line_margin=0.5,
                            word_margin=0.1,
                            char_margin=2.0,
                            all_texts=True
                        )
                    )
                except:
                    text = ""
                
                if not text.strip():
                    text = extract_pdf_text_with_ocr(file.name)
                
                if text:
                    words = text.split()
                    lines = text.split('\n')
                    content += f"\n3. Text Analysis:\n"
                    content += f"- Total Words: {len(words):,}\n"
                    content += f"- Unique Words: {len(set(words)):,}\n"
                    content += f"- Total Lines: {len(lines):,}\n"
                    
                    content += f"\n4. Content Preview:\n"
                    preview_length = min(2000, len(text))
                    content += f"--- First {preview_length} characters ---\n"
                    content += text[:preview_length]
                    if len(text) > preview_length:
                        content += f"\n... (Showing partial content of {len(text):,} characters)\n"
                else:
                    content += "\nโš ๏ธ Text extraction failed"
                
                return content, "pdf"
            except Exception as e:
                return f"Error reading PDF file: {str(e)}", "error"
        
        # CSV file processing
        elif file_ext == '.csv':
            encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
            for encoding in encodings:
                try:
                    df = pd.read_csv(file.name, encoding=encoding)
                    content = f"๐Ÿ“Š CSV File Analysis:\n\n"
                    content += f"1. Basic Information:\n"
                    content += f"- Total Rows: {len(df):,}\n"
                    content += f"- Total Columns: {len(df.columns)}\n"
                    content += f"- Memory Usage: {df.memory_usage(deep=True).sum() / 1024 / 1024:.2f} MB\n\n"
                    
                    content += f"2. Column Information:\n"
                    for col in df.columns:
                        content += f"- {col} ({df[col].dtype})\n"
                    
                    content += f"\n3. Data Preview:\n"
                    content += df.head(5).to_markdown(index=False)
                    
                    content += f"\n\n4. Missing Values:\n"
                    null_counts = df.isnull().sum()
                    for col, count in null_counts[null_counts > 0].items():
                        content += f"- {col}: {count:,} ({count/len(df)*100:.1f}%)\n"
                    
                    return content, "csv"
                except UnicodeDecodeError:
                    continue
            raise UnicodeDecodeError(f"Unable to read file with supported encodings ({', '.join(encodings)})")
        
        # Text file processing
        else:
            encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
            for encoding in encodings:
                try:
                    with open(file.name, 'r', encoding=encoding) as f:
                        content = f.read()
                    
                    lines = content.split('\n')
                    total_lines = len(lines)
                    non_empty_lines = len([line for line in lines if line.strip()])
                    
                    is_code = any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function'])
                    
                    analysis = f"\n๐Ÿ“ File Analysis:\n"
                    if is_code:
                        functions = len([line for line in lines if 'def ' in line])
                        classes = len([line for line in lines if 'class ' in line])
                        imports = len([line for line in lines if 'import ' in line or 'from ' in line])
                        
                        analysis += f"- File Type: Code\n"
                        analysis += f"- Total Lines: {total_lines:,}\n"
                        analysis += f"- Functions: {functions}\n"
                        analysis += f"- Classes: {classes}\n"
                        analysis += f"- Import Statements: {imports}\n"
                    else:
                        words = len(content.split())
                        chars = len(content)
                        
                        analysis += f"- File Type: Text\n"
                        analysis += f"- Total Lines: {total_lines:,}\n"
                        analysis += f"- Non-empty Lines: {non_empty_lines:,}\n"
                        analysis += f"- Word Count: {words:,}\n"
                        analysis += f"- Character Count: {chars:,}\n"
                    
                    return content + analysis, "text"
                except UnicodeDecodeError:
                    continue
            raise UnicodeDecodeError(f"Unable to read file with supported encodings ({', '.join(encodings)})")
            
    except Exception as e:
        return f"Error reading file: {str(e)}", "error"


CSS = """
/* 3D ์Šคํƒ€์ผ CSS */
:root {
    --primary-color: #2196f3;
    --secondary-color: #1976d2;
    --background-color: #f0f2f5;
    --card-background: #ffffff;
    --text-color: #333333;
    --shadow-color: rgba(0, 0, 0, 0.1);
}
body {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    min-height: 100vh;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.container {
    transform-style: preserve-3d;
    perspective: 1000px;
}
.chatbot {
    background: var(--card-background);
    border-radius: 20px;
    box-shadow: 
        0 10px 20px var(--shadow-color),
        0 6px 6px var(--shadow-color);
    transform: translateZ(0);
    transition: transform 0.3s ease;
    backdrop-filter: blur(10px);
}
.chatbot:hover {
    transform: translateZ(10px);
}
/* ๋ฉ”์‹œ์ง€ ์ž…๋ ฅ ์˜์—ญ */
.input-area {
    background: var(--card-background);
    border-radius: 15px;
    padding: 15px;
    margin-top: 20px;
    box-shadow: 
        0 5px 15px var(--shadow-color),
        0 3px 3px var(--shadow-color);
    transform: translateZ(0);
    transition: all 0.3s ease;
    display: flex;
    align-items: center;
    gap: 10px;
}
.input-area:hover {
    transform: translateZ(5px);
}
/* ๋ฒ„ํŠผ ์Šคํƒ€์ผ */
.custom-button {
    background: linear-gradient(145deg, var(--primary-color), var(--secondary-color));
    color: white;
    border: none;
    border-radius: 10px;
    padding: 10px 20px;
    font-weight: 600;
    cursor: pointer;
    transform: translateZ(0);
    transition: all 0.3s ease;
    box-shadow: 
        0 4px 6px var(--shadow-color),
        0 1px 3px var(--shadow-color);
}
.custom-button:hover {
    transform: translateZ(5px) translateY(-2px);
    box-shadow: 
        0 7px 14px var(--shadow-color),
        0 3px 6px var(--shadow-color);
}
/* ํŒŒ์ผ ์—…๋กœ๋“œ ๋ฒ„ํŠผ */
.file-upload-icon {
    background: linear-gradient(145deg, #64b5f6, #42a5f5);
    color: white;
    border-radius: 8px;
    font-size: 2em;
    cursor: pointer;
    display: flex;
    align-items: center;
    justify-content: center;
    height: 70px;
    width: 70px;
    transition: all 0.3s ease;
    box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.file-upload-icon:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
/* ํŒŒ์ผ ์—…๋กœ๋“œ ๋ฒ„ํŠผ ๋‚ด๋ถ€ ์š”์†Œ ์Šคํƒ€์ผ๋ง */
.file-upload-icon > .wrap {
    display: flex !important;
    align-items: center;
    justify-content: center;
    width: 100%;
    height: 100%;
}
.file-upload-icon > .wrap > p {
    display: none !important;
}
.file-upload-icon > .wrap::before {
    content: "๐Ÿ“";
    font-size: 2em;
    display: block;
}
/* ๋ฉ”์‹œ์ง€ ์Šคํƒ€์ผ */
.message {
    background: var(--card-background);
    border-radius: 15px;
    padding: 15px;
    margin: 10px 0;
    box-shadow: 
        0 4px 6px var(--shadow-color),
        0 1px 3px var(--shadow-color);
    transform: translateZ(0);
    transition: all 0.3s ease;
}
.message:hover {
    transform: translateZ(5px);
}
.chat-container {
    height: 600px !important;
    margin-bottom: 10px;
}
.input-container {
    height: 70px !important;
    display: flex;
    align-items: center;
    gap: 10px;
    margin-top: 5px;
}
.input-textbox {
    height: 70px !important;
    border-radius: 8px !important;
    font-size: 1.1em !important;
    padding: 10px 15px !important;
    display: flex !important;
    align-items: flex-start !important;  /* ํ…์ŠคํŠธ ์ž…๋ ฅ ์œ„์น˜๋ฅผ ์œ„๋กœ ์กฐ์ • */
}
.input-textbox textarea {
    padding-top: 5px !important;  /* ํ…์ŠคํŠธ ์ƒ๋‹จ ์—ฌ๋ฐฑ ์กฐ์ • */
}
.send-button {
    height: 70px !important;
    min-width: 70px !important;
    font-size: 1.1em !important;
}
/* ์„ค์ • ํŒจ๋„ ๊ธฐ๋ณธ ์Šคํƒ€์ผ */
.settings-panel {
    padding: 20px;
    margin-top: 20px;
}
"""

# GPU ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ํ•จ์ˆ˜ ์ˆ˜์ •
def clear_cuda_memory():
    if hasattr(torch.cuda, 'empty_cache'):
        with torch.cuda.device('cuda'):
            torch.cuda.empty_cache()

# ๋ชจ๋ธ ๋กœ๋“œ ํ•จ์ˆ˜ ์ˆ˜์ •
@spaces.GPU
def load_model():
    try:
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16,
            device_map="auto",
        )
        return model
    except Exception as e:
        print(f"๋ชจ๋ธ ๋กœ๋“œ ์˜ค๋ฅ˜: {str(e)}")
        raise

@spaces.GPU
def stream_chat(message: str, history: list, uploaded_file, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    global model, current_file_context
    
    try:
        if model is None:
            model = load_model()
            
        print(f'message is - {message}')
        print(f'history is - {history}')

        # ํŒŒ์ผ ์—…๋กœ๋“œ ์ฒ˜๋ฆฌ
        file_context = ""
        if uploaded_file and message == "ํŒŒ์ผ์„ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค...":
            try:
                content, file_type = read_uploaded_file(uploaded_file)
                if content:
                    file_analysis = analyze_file_content(content, file_type)
                    file_context = f"\n\n๐Ÿ“„ ํŒŒ์ผ ๋ถ„์„ ๊ฒฐ๊ณผ:\n{file_analysis}\n\nํŒŒ์ผ ๋‚ด์šฉ:\n```\n{content}\n```"
                    current_file_context = file_context  # ํŒŒ์ผ ์ปจํ…์ŠคํŠธ ์ €์žฅ
                    message = "์—…๋กœ๋“œ๋œ ํŒŒ์ผ์„ ๋ถ„์„ํ•ด์ฃผ์„ธ์š”."
            except Exception as e:
                print(f"ํŒŒ์ผ ๋ถ„์„ ์˜ค๋ฅ˜: {str(e)}")
                file_context = f"\n\nโŒ ํŒŒ์ผ ๋ถ„์„ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
        elif current_file_context:  # ์ €์žฅ๋œ ํŒŒ์ผ ์ปจํ…์ŠคํŠธ๊ฐ€ ์žˆ์œผ๋ฉด ์‚ฌ์šฉ
            file_context = current_file_context
            

        # ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋ชจ๋‹ˆํ„ฐ๋ง
        if torch.cuda.is_available():
            print(f"CUDA ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")

        # ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ๊ฐ€ ๋„ˆ๋ฌด ๊ธธ๋ฉด ์ž˜๋ผ๋‚ด๊ธฐ
        max_history_length = 10  # ์ตœ๋Œ€ ํžˆ์Šคํ† ๋ฆฌ ๊ธธ์ด ์„ค์ •
        if len(history) > max_history_length:
            history = history[-max_history_length:]

        # ๊ด€๋ จ ์ปจํ…์ŠคํŠธ ์ฐพ๊ธฐ
        try:
            relevant_contexts = find_relevant_context(message)
            wiki_context = "\n\n๊ด€๋ จ ์œ„ํ‚คํ”ผ๋””์•„ ์ •๋ณด:\n"
            for ctx in relevant_contexts:
                wiki_context += f"Q: {ctx['question']}\nA: {ctx['answer']}\n์œ ์‚ฌ๋„: {ctx['similarity']:.3f}\n\n"
        except Exception as e:
            print(f"์ปจํ…์ŠคํŠธ ๊ฒ€์ƒ‰ ์˜ค๋ฅ˜: {str(e)}")
            wiki_context = ""
        
        # ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ ๊ตฌ์„ฑ
        conversation = []
        for prompt, answer in history:
            conversation.extend([
                {"role": "user", "content": prompt},
                {"role": "assistant", "content": answer}
            ])

        # ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ ๊ตฌ์„ฑ
        final_message = file_context + wiki_context + "\nํ˜„์žฌ ์งˆ๋ฌธ: " + message
        conversation.append({"role": "user", "content": final_message})

        # ํ† ํฐ ์ˆ˜ ์ œํ•œ
        input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
        max_length = 4096  # ๋˜๋Š” ๋ชจ๋ธ์˜ ์ตœ๋Œ€ ์ปจํ…์ŠคํŠธ ๊ธธ์ด
        if len(input_ids.split()) > max_length:
            # ์ปจํ…์ŠคํŠธ๊ฐ€ ๋„ˆ๋ฌด ๊ธธ๋ฉด ์ž˜๋ผ๋‚ด๊ธฐ
            input_ids = " ".join(input_ids.split()[-max_length:])

        inputs = tokenizer(input_ids, return_tensors="pt").to("cuda")

        # ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ฒดํฌ
        if torch.cuda.is_available():
            print(f"์ž…๋ ฅ ํ…์„œ ์ƒ์„ฑ ํ›„ CUDA ๋ฉ”๋ชจ๋ฆฌ: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")

        streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)

        generate_kwargs = dict(
            inputs, 
            streamer=streamer,
            top_k=top_k,
            top_p=top_p,
            repetition_penalty=penalty,
            max_new_tokens=min(max_new_tokens, 2048),  # ์ตœ๋Œ€ ํ† ํฐ ์ˆ˜ ์ œํ•œ
            do_sample=True, 
            temperature=temperature,
            eos_token_id=[255001],
        )
        
        # ์ƒ์„ฑ ์‹œ์ž‘ ์ „ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        clear_cuda_memory()
        
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()

        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield "", history + [[message, buffer]]

        # ์ƒ์„ฑ ์™„๋ฃŒ ํ›„ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        clear_cuda_memory()

    except Exception as e:
        error_message = f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
        print(f"Stream chat ์˜ค๋ฅ˜: {error_message}")
        # ์˜ค๋ฅ˜ ๋ฐœ์ƒ ์‹œ์—๋„ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        clear_cuda_memory()
        yield "", history + [[message, error_message]]



def create_demo():
    with gr.Blocks(css=CSS) as demo:
        with gr.Column(elem_classes="markdown-style"):
            gr.Markdown("""
                # ๐Ÿค– RAGOndevice
                #### ๐Ÿ“Š RAG: Upload and Analyze Files (TXT, CSV, PDF, Parquet files)
                Upload your files for data analysis and learning
            """)
        
        chatbot = gr.Chatbot(
            value=[],
            height=600,
            label="GiniGEN AI Assistant",
            elem_classes="chat-container"
        )
        
        with gr.Row(elem_classes="input-container"):
            with gr.Column(scale=1, min_width=70):
                file_upload = gr.File(
                    type="filepath",
                    elem_classes="file-upload-icon",
                    scale=1,
                    container=True,
                    interactive=True,
                    show_label=False
                )
            
            with gr.Column(scale=3):
                msg = gr.Textbox(
                    show_label=False,
                    placeholder="Type your message here... ๐Ÿ’ญ",
                    container=False,
                    elem_classes="input-textbox",
                    scale=1
                )
            
            with gr.Column(scale=1, min_width=70):
                send = gr.Button(
                    "Send",
                    elem_classes="send-button custom-button",
                    scale=1
                )
                
            with gr.Column(scale=1, min_width=70):
                clear = gr.Button(
                    "Clear",
                    elem_classes="clear-button custom-button",
                    scale=1
                )
        
        with gr.Accordion("๐ŸŽฎ Advanced Settings", open=False):
            with gr.Row():
                with gr.Column(scale=1):
                    temperature = gr.Slider(
                        minimum=0, maximum=1, step=0.1, value=0.8,
                        label="Creativity Level ๐ŸŽจ"
                    )
                    max_new_tokens = gr.Slider(
                        minimum=128, maximum=8000, step=1, value=4000,
                        label="Maximum Token Count ๐Ÿ“"
                    )
                with gr.Column(scale=1):
                    top_p = gr.Slider(
                        minimum=0.0, maximum=1.0, step=0.1, value=0.8,
                        label="Diversity Control ๐ŸŽฏ"
                    )
                    top_k = gr.Slider(
                        minimum=1, maximum=20, step=1, value=20,
                        label="Selection Range ๐Ÿ“Š"
                    )
                    penalty = gr.Slider(
                        minimum=0.0, maximum=2.0, step=0.1, value=1.0,
                        label="Repetition Penalty ๐Ÿ”„"
                    )

        gr.Examples(
            examples=[
                ["Please analyze this code and suggest improvements:\ndef fibonacci(n):\n    if n <= 1: return n\n    return fibonacci(n-1) + fibonacci(n-2)"],
                ["Please analyze this data and provide insights:\nAnnual Revenue (Million)\n2019: 1200\n2020: 980\n2021: 1450\n2022: 2100\n2023: 1890"],
                ["Please solve this math problem step by step: 'When a circle's area is twice that of its inscribed square, find the relationship between the circle's radius and the square's side length.'"],
                ["Please analyze this marketing campaign's ROI and suggest improvements:\nTotal Cost: $50,000\nReach: 1M users\nClick Rate: 2.3%\nConversion Rate: 0.8%\nAverage Purchase: $35"],
            ],
            inputs=msg
        )

        def clear_conversation():
            global current_file_context
            current_file_context = None
            return [], None, "Start a new conversation..."

        # Event bindings
        msg.submit(
            stream_chat,
            inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
            outputs=[msg, chatbot]
        )

        send.click(
            stream_chat,
            inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
            outputs=[msg, chatbot]
        )

        file_upload.change(
            fn=init_msg,
            outputs=msg,
            queue=False
        ).then(
            fn=stream_chat,
            inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
            outputs=[msg, chatbot],
            queue=True
        )

        # Clear button event binding
        clear.click(
            fn=clear_conversation,
            outputs=[chatbot, file_upload, msg],
            queue=False
        )

        return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch()