File size: 10,173 Bytes
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""
trainer.py - warpper and utility functions for network training
Compute loss, back-prop, update parameters, logging, etc.
"""
import datetime
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim

from model.network import XMem
from model.losses import LossComputer
from util.log_integrator import Integrator
from util.image_saver import pool_pairs


class XMemTrainer:
    def __init__(self, config, logger=None, save_path=None, local_rank=0, world_size=1):
        self.config = config
        self.num_frames = config['num_frames']
        self.num_ref_frames = config['num_ref_frames']
        self.deep_update_prob = config['deep_update_prob']
        self.local_rank = local_rank

        self.XMem = nn.parallel.DistributedDataParallel(
            XMem(config).cuda(), 
            device_ids=[local_rank], output_device=local_rank, broadcast_buffers=False)

        # Set up logger when local_rank=0
        self.logger = logger
        self.save_path = save_path
        if logger is not None:
            self.last_time = time.time()
            self.logger.log_string('model_size', str(sum([param.nelement() for param in self.XMem.parameters()])))
        self.train_integrator = Integrator(self.logger, distributed=True, local_rank=local_rank, world_size=world_size)
        self.loss_computer = LossComputer(config)

        self.train()
        self.optimizer = optim.AdamW(filter(
            lambda p: p.requires_grad, self.XMem.parameters()), lr=config['lr'], weight_decay=config['weight_decay'])
        self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer, config['steps'], config['gamma'])
        if config['amp']:
            self.scaler = torch.cuda.amp.GradScaler()

        # Logging info
        self.log_text_interval = config['log_text_interval']
        self.log_image_interval = config['log_image_interval']
        self.save_network_interval = config['save_network_interval']
        self.save_checkpoint_interval = config['save_checkpoint_interval']
        if config['debug']:
            self.log_text_interval = self.log_image_interval = 1

    def do_pass(self, data, max_it, it=0):
        # No need to store the gradient outside training
        torch.set_grad_enabled(self._is_train)

        for k, v in data.items():
            if type(v) != list and type(v) != dict and type(v) != int:
                data[k] = v.cuda(non_blocking=True)

        out = {}
        frames = data['rgb']
        first_frame_gt = data['first_frame_gt'].float()
        b = frames.shape[0]
        num_filled_objects = [o.item() for o in data['info']['num_objects']]
        num_objects = first_frame_gt.shape[2]
        selector = data['selector'].unsqueeze(2).unsqueeze(2)

        global_avg = 0

        with torch.cuda.amp.autocast(enabled=self.config['amp']):
            # image features never change, compute once
            key, shrinkage, selection, f16, f8, f4 = self.XMem('encode_key', frames)

            filler_one = torch.zeros(1, dtype=torch.int64)
            hidden = torch.zeros((b, num_objects, self.config['hidden_dim'], *key.shape[-2:]))
            v16, hidden = self.XMem('encode_value', frames[:,0], f16[:,0], hidden, first_frame_gt[:,0])
            values = v16.unsqueeze(3) # add the time dimension

            for ti in range(1, self.num_frames):
                if ti <= self.num_ref_frames:
                    ref_values = values
                    ref_keys = key[:,:,:ti]
                    ref_shrinkage = shrinkage[:,:,:ti] if shrinkage is not None else None
                else:
                    # pick num_ref_frames random frames
                    # this is not very efficient but I think we would 
                    # need broadcasting in gather which we don't have
                    indices = [
                        torch.cat([filler_one, torch.randperm(ti-1)[:self.num_ref_frames-1]+1])
                    for _ in range(b)]
                    ref_values = torch.stack([
                        values[bi, :, :, indices[bi]] for bi in range(b)
                    ], 0)
                    ref_keys = torch.stack([
                        key[bi, :, indices[bi]] for bi in range(b)
                    ], 0)
                    ref_shrinkage = torch.stack([
                        shrinkage[bi, :, indices[bi]] for bi in range(b)
                    ], 0) if shrinkage is not None else None

                # Segment frame ti
                memory_readout = self.XMem('read_memory', key[:,:,ti], selection[:,:,ti] if selection is not None else None, 
                                        ref_keys, ref_shrinkage, ref_values)
                hidden, logits, masks = self.XMem('segment', (f16[:,ti], f8[:,ti], f4[:,ti]), memory_readout, 
                        hidden, selector, h_out=(ti < (self.num_frames-1)))

                # No need to encode the last frame
                if ti < (self.num_frames-1):
                    is_deep_update = np.random.rand() < self.deep_update_prob
                    v16, hidden = self.XMem('encode_value', frames[:,ti], f16[:,ti], hidden, masks, is_deep_update=is_deep_update)
                    values = torch.cat([values, v16.unsqueeze(3)], 3)

                out[f'masks_{ti}'] = masks
                out[f'logits_{ti}'] = logits

            if self._do_log or self._is_train:
                losses = self.loss_computer.compute({**data, **out}, num_filled_objects, it)

                # Logging
                if self._do_log:
                    self.integrator.add_dict(losses)
                    if self._is_train:
                        if it % self.log_image_interval == 0 and it != 0:
                            if self.logger is not None:
                                images = {**data, **out}
                                size = (384, 384)
                                self.logger.log_cv2('train/pairs', pool_pairs(images, size, num_filled_objects), it)

            if self._is_train:

                if (it) % self.log_text_interval == 0 and it != 0:
                    time_spent = time.time()-self.last_time

                    if self.logger is not None:
                        self.logger.log_scalar('train/lr', self.scheduler.get_last_lr()[0], it)
                        self.logger.log_metrics('train', 'time', (time_spent)/self.log_text_interval, it)
                    
                    global_avg = 0.5*(global_avg) + 0.5*(time_spent)
                    eta_seconds = global_avg * (max_it - it) / 100
                    eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                    print(f'ETA: {eta_string}')
                    
                    self.last_time = time.time()
                    self.train_integrator.finalize('train', it)
                    self.train_integrator.reset_except_hooks()

                if it % self.save_network_interval == 0 and it != 0:
                    if self.logger is not None:
                        self.save_network(it)

                if it % self.save_checkpoint_interval == 0 and it != 0:
                    if self.logger is not None:
                        self.save_checkpoint(it)

        # Backward pass
        self.optimizer.zero_grad(set_to_none=True)
        if self.config['amp']:
            self.scaler.scale(losses['total_loss']).backward()
            self.scaler.step(self.optimizer)
            self.scaler.update()
        else:
            losses['total_loss'].backward() 
            self.optimizer.step()

        self.scheduler.step()

    def save_network(self, it):
        if self.save_path is None:
            print('Saving has been disabled.')
            return
        
        os.makedirs(os.path.dirname(self.save_path), exist_ok=True)
        model_path = f'{self.save_path}_{it}.pth'
        torch.save(self.XMem.module.state_dict(), model_path)
        print(f'Network saved to {model_path}.')

    def save_checkpoint(self, it):
        if self.save_path is None:
            print('Saving has been disabled.')
            return

        os.makedirs(os.path.dirname(self.save_path), exist_ok=True)
        checkpoint_path = f'{self.save_path}_checkpoint_{it}.pth'
        checkpoint = { 
            'it': it,
            'network': self.XMem.module.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'scheduler': self.scheduler.state_dict()}
        torch.save(checkpoint, checkpoint_path)
        print(f'Checkpoint saved to {checkpoint_path}.')

    def load_checkpoint(self, path):
        # This method loads everything and should be used to resume training
        map_location = 'cuda:%d' % self.local_rank
        checkpoint = torch.load(path, map_location={'cuda:0': map_location})

        it = checkpoint['it']
        network = checkpoint['network']
        optimizer = checkpoint['optimizer']
        scheduler = checkpoint['scheduler']

        map_location = 'cuda:%d' % self.local_rank
        self.XMem.module.load_state_dict(network)
        self.optimizer.load_state_dict(optimizer)
        self.scheduler.load_state_dict(scheduler)

        print('Network weights, optimizer states, and scheduler states loaded.')

        return it

    def load_network_in_memory(self, src_dict):
        self.XMem.module.load_weights(src_dict)
        print('Network weight loaded from memory.')

    def load_network(self, path):
        # This method loads only the network weight and should be used to load a pretrained model
        map_location = 'cuda:%d' % self.local_rank
        src_dict = torch.load(path, map_location={'cuda:0': map_location})

        self.load_network_in_memory(src_dict)
        print(f'Network weight loaded from {path}')

    def train(self):
        self._is_train = True
        self._do_log = True
        self.integrator = self.train_integrator
        self.XMem.eval()
        return self

    def val(self):
        self._is_train = False
        self._do_log = True
        self.XMem.eval()
        return self

    def test(self):
        self._is_train = False
        self._do_log = False
        self.XMem.eval()
        return self