Track-Anything / app_save.py
watchtowerss's picture
track-anything --version 1
4d1ebf3
raw
history blame
14.7 kB
import gradio as gr
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
import argparse
import cv2
import time
from PIL import Image
import numpy as np
import os
import sys
sys.path.append(sys.path[0]+"/tracker")
sys.path.append(sys.path[0]+"/tracker/model")
from track_anything import TrackingAnything
from track_anything import parse_augment
import requests
import json
import torchvision
import torch
import concurrent.futures
import queue
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
print("download checkpoints ......")
response = requests.get(url, stream=True)
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
print("download successfully!")
return filepath
def pause_video(play_state):
print("user pause_video")
play_state.append(time.time())
return play_state
def play_video(play_state):
print("user play_video")
play_state.append(time.time())
return play_state
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
def get_frames_from_video(video_input, play_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
# video_name = video_path.split('/')[-1]
try:
timestamp = play_state[1] - play_state[0]
except:
timestamp = 0
frames = []
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
# for index, frame in enumerate(frames):
# frames[index] = np.asarray(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
key_frame_index = int(timestamp * fps)
nearest_frame = frames[key_frame_index]
frames_split = [frames[:key_frame_index], frames[key_frame_index:], nearest_frame]
# output_path='./seperate.mp4'
# torchvision.io.write_video(output_path, frames[1], fps=fps, video_codec="libx264")
# set image in sam when select the template frame
model.samcontroler.sam_controler.set_image(nearest_frame)
return frames_split, nearest_frame, nearest_frame, fps
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
# height, width, layers = frames[0].shape
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# for frame in frames:
# video.write(frame)
# video.release()
frames = torch.from_numpy(np.asarray(frames))
output_path='./output.mp4'
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
def model_reset():
model.xmem.clear_memory()
return None
def sam_refine(origin_frame, point_prompt, click_state, logit, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
# default value
# points = np.array([[evt.index[0],evt.index[1]]])
# labels= np.array([1])
if len(logit)==0:
logit = None
mask, logit, painted_image = model.first_frame_click(
image=origin_frame,
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
return painted_image, click_state, logit, mask
def vos_tracking_video(video_state, template_mask,fps,video_input):
masks, logits, painted_images = model.generator(images=video_state[1], template_mask=template_mask)
video_output = generate_video_from_frames(painted_images, output_path="./output.mp4", fps=fps)
# image_selection_slider = gr.Slider(minimum=1, maximum=len(video_state[1]), value=1, label="Image Selection", interactive=True)
video_name = video_input.split('/')[-1].split('.')[0]
result_path = os.path.join('/hhd3/gaoshang/Track-Anything/results/'+video_name)
if not os.path.exists(result_path):
os.makedirs(result_path)
i=0
for mask in masks:
np.save(os.path.join(result_path,'{:05}.npy'.format(i)), mask)
i+=1
return video_output, painted_images, masks, logits
def vos_tracking_image(image_selection_slider, painted_images):
# images = video_state[1]
percentage = image_selection_slider / 100
select_frame_num = int(percentage * len(painted_images))
return painted_images[select_frame_num], select_frame_num
def interactive_correction(video_state, point_prompt, click_state, select_correction_frame, evt: gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
refine_image = video_state[1][select_correction_frame]
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
model.samcontroler.seg_again(refine_image)
corrected_mask, corrected_logit, corrected_painted_image = model.first_frame_click(
image=refine_image,
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
return corrected_painted_image, [corrected_mask, corrected_logit, corrected_painted_image]
def correct_track(video_state, select_correction_frame, corrected_state, masks, logits, painted_images, fps, video_input):
model.xmem.clear_memory()
# inference the following images
following_images = video_state[1][select_correction_frame:]
corrected_masks, corrected_logits, corrected_painted_images = model.generator(images=following_images, template_mask=corrected_state[0])
masks = masks[:select_correction_frame] + corrected_masks
logits = logits[:select_correction_frame] + corrected_logits
painted_images = painted_images[:select_correction_frame] + corrected_painted_images
video_output = generate_video_from_frames(painted_images, output_path="./output.mp4", fps=fps)
video_name = video_input.split('/')[-1].split('.')[0]
result_path = os.path.join('/hhd3/gaoshang/Track-Anything/results/'+video_name)
if not os.path.exists(result_path):
os.makedirs(result_path)
i=0
for mask in masks:
np.save(os.path.join(result_path,'{:05}.npy'.format(i)), mask)
i+=1
return video_output, painted_images, logits, masks
# check and download checkpoints if needed
SAM_checkpoint = "sam_vit_h_4b8939.pth"
sam_checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
xmem_checkpoint = "XMem-s012.pth"
xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
folder ="./checkpoints"
SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, SAM_checkpoint)
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)
# args, defined in track_anything.py
args = parse_augment()
args.port = 12207
args.device = "cuda:5"
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
with gr.Blocks() as iface:
"""
state for
"""
state = gr.State([])
play_state = gr.State([])
video_state = gr.State([[],[],[]])
click_state = gr.State([[],[]])
logits = gr.State([])
masks = gr.State([])
painted_images = gr.State([])
origin_image = gr.State(None)
template_mask = gr.State(None)
select_correction_frame = gr.State(None)
corrected_state = gr.State([[],[],[]])
fps = gr.State([])
# video_name = gr.State([])
# queue value for image refresh, origin image, mask, logits, painted image
with gr.Row():
# for user video input
with gr.Column(scale=1.0):
video_input = gr.Video().style(height=720)
# listen to the user action for play and pause input video
video_input.play(fn=play_video, inputs=play_state, outputs=play_state, scroll_to_output=True, show_progress=True)
video_input.pause(fn=pause_video, inputs=play_state, outputs=play_state)
with gr.Row(scale=1):
# put the template frame under the radio button
with gr.Column(scale=0.5):
# click points settins, negative or positive, mode continuous or single
with gr.Row():
with gr.Row(scale=0.5):
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True)
click_mode = gr.Radio(
choices=["Continuous", "Single"],
value="Continuous",
label="Clicking Mode",
interactive=True)
with gr.Row(scale=0.5):
clear_button_clike = gr.Button(value="Clear Clicks", interactive=True).style(height=160)
clear_button_image = gr.Button(value="Clear Image", interactive=True)
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame").style(height=360)
with gr.Column():
template_select_button = gr.Button(value="Template select", interactive=True, variant="primary")
with gr.Column(scale=0.5):
# for intermedia result check and correction
# intermedia_image = gr.Image(type="pil", interactive=True, elem_id="intermedia_frame").style(height=360)
video_output = gr.Video().style(height=360)
tracking_video_predict_button = gr.Button(value="Tracking")
image_output = gr.Image(type="pil", interactive=True, elem_id="image_output").style(height=360)
image_selection_slider = gr.Slider(minimum=0, maximum=100, step=0.1, value=0, label="Image Selection", interactive=True)
correct_track_button = gr.Button(value="Interactive Correction")
template_frame.select(
fn=sam_refine,
inputs=[
origin_image, point_prompt, click_state, logits
],
outputs=[
template_frame, click_state, logits, template_mask
]
)
template_select_button.click(
fn=get_frames_from_video,
inputs=[
video_input,
play_state
],
# outputs=[video_state, template_frame, origin_image, fps, video_name],
outputs=[video_state, template_frame, origin_image, fps],
)
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, template_mask, fps, video_input],
outputs=[video_output, painted_images, masks, logits]
)
image_selection_slider.release(fn=vos_tracking_image,
inputs=[image_selection_slider, painted_images], outputs=[image_output, select_correction_frame], api_name="select_image")
# correction
image_output.select(
fn=interactive_correction,
inputs=[video_state, point_prompt, click_state, select_correction_frame],
outputs=[image_output, corrected_state]
)
correct_track_button.click(
fn=correct_track,
inputs=[video_state, select_correction_frame, corrected_state, masks, logits, painted_images, fps,video_input],
outputs=[video_output, painted_images, logits, masks ]
)
# clear input
video_input.clear(
lambda: ([], [], [[], [], []],
None, "", "", "", "", "", "", "", [[],[]],
None),
[],
[ state, play_state, video_state,
template_frame, video_output, image_output, origin_image, template_mask, painted_images, masks, logits, click_state,
select_correction_frame],
queue=False,
show_progress=False
)
clear_button_image.click(
fn=model_reset
)
clear_button_clike.click(
lambda: ([[],[]]),
[],
[click_state],
queue=False,
show_progress=False
)
iface.queue(concurrency_count=1)
iface.launch(debug=True, enable_queue=True, server_port=args.port, server_name="0.0.0.0")