Upload app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,9 @@ from PIL import Image
|
|
3 |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
4 |
from streamlit_extras.app_logo import add_logo
|
5 |
|
6 |
-
|
7 |
def logo():
|
8 |
-
add_logo("vocali_logo.
|
9 |
-
|
10 |
|
11 |
def get_result_text_es_pt (list_entity, text, lang):
|
12 |
result_words = []
|
@@ -45,7 +44,7 @@ def get_result_text_es_pt (list_entity, text, lang):
|
|
45 |
word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
|
46 |
|
47 |
if tag != "l":
|
48 |
-
word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
|
49 |
|
50 |
if subword == True:
|
51 |
result_words[-1] = word
|
@@ -90,6 +89,7 @@ def get_result_text_ca (list_entity, text):
|
|
90 |
word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
|
91 |
elif tag[-1] == "u":
|
92 |
word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
|
|
|
93 |
if tag != "l":
|
94 |
word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
|
95 |
|
@@ -99,44 +99,41 @@ def get_result_text_ca (list_entity, text):
|
|
99 |
result_words.append(word)
|
100 |
|
101 |
return " ".join(result_words)
|
102 |
-
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
|
110 |
-
|
111 |
|
112 |
-
|
113 |
tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
|
114 |
-
|
115 |
|
116 |
-
|
117 |
tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
|
118 |
-
|
119 |
|
120 |
-
|
121 |
label = "Choose an language",
|
122 |
options = ["Spanish", "Portuguese", "Catalan"]
|
123 |
)
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
3 |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
4 |
from streamlit_extras.app_logo import add_logo
|
5 |
|
|
|
6 |
def logo():
|
7 |
+
add_logo("vocali_logo.jpeg", height=300)
|
8 |
+
|
9 |
|
10 |
def get_result_text_es_pt (list_entity, text, lang):
|
11 |
result_words = []
|
|
|
44 |
word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
|
45 |
|
46 |
if tag != "l":
|
47 |
+
word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
|
48 |
|
49 |
if subword == True:
|
50 |
result_words[-1] = word
|
|
|
89 |
word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
|
90 |
elif tag[-1] == "u":
|
91 |
word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
|
92 |
+
|
93 |
if tag != "l":
|
94 |
word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
|
95 |
|
|
|
99 |
result_words.append(word)
|
100 |
|
101 |
return " ".join(result_words)
|
102 |
+
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
+
|
106 |
+
logo()
|
107 |
+
st.title('Sanivert Punctuation And Capitalization Restoration')
|
108 |
+
model_es = AutoModelForTokenClassification.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
|
109 |
tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
|
110 |
+
pipe_es = pipeline("token-classification", model=model_es, tokenizer=tokenizer_es)
|
111 |
|
112 |
+
model_ca = AutoModelForTokenClassification.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
|
113 |
tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
|
114 |
+
pipe_ca = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
|
115 |
|
116 |
+
model_pt = AutoModelForTokenClassification.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
|
117 |
tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
|
118 |
+
pipe_pt = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
|
119 |
|
120 |
+
input_text = st.selectbox(
|
121 |
label = "Choose an language",
|
122 |
options = ["Spanish", "Portuguese", "Catalan"]
|
123 |
)
|
124 |
+
|
125 |
+
st.subheader("Enter the text to be analyzed.")
|
126 |
+
text = st.text_input('Enter text') #text is stored in this variable
|
127 |
+
if input_text == "Spanish":
|
128 |
+
result_pipe = pipe_es(text)
|
129 |
+
out = get_result_text_es_pt(result_pipe, text, "es")
|
130 |
+
elif input_text == "Portuguese":
|
131 |
+
result_pipe = pipe_pt(text)
|
132 |
+
out = get_result_text_es_pt(result_pipe, text, "pt")
|
133 |
+
elif input_text == "Catalan":
|
134 |
+
result_pipe = pipe_ca(text)
|
135 |
+
out = get_result_text_ca(result_pipe, text)
|
136 |
+
|
137 |
+
out = get_prediction(text, input_text)
|
138 |
+
st.markdown(out, unsafe_allow_html=True)
|
139 |
+
text = ""
|
|
|
|
|
|