jcg00v commited on
Commit
b3b8331
1 Parent(s): b1b3e16

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +143 -0
app.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
4
+ from streamlit_extras.app_logo import add_logo
5
+
6
+
7
+ def logo():
8
+ add_logo("vocali_logo.jpeg", height=300)
9
+
10
+
11
+ def get_result_text_es_pt (list_entity, text, lang):
12
+ result_words = []
13
+ if lang == "es":
14
+ punc_tags = ['¿', '?', '¡', '!', ',', '.', ':']
15
+ else:
16
+ punc_tags = ['?', '!', ',', '.', ':']
17
+
18
+ for entity in list_entity:
19
+ tag = entity["entity"]
20
+ word = entity["word"]
21
+ start = entity["start"]
22
+ end = entity["end"]
23
+
24
+ # check punctuation
25
+ punc_in = next((p for p in punc_tags if p in tag), "")
26
+
27
+ subword = False
28
+ # check subwords
29
+ if word[0] == "#":
30
+ subword = True
31
+ if punc_in != "":
32
+ word = result_words[-1].replace(punc_in, "") + text[start:end]
33
+ else:
34
+ word = result_words[-1] + text[start:end]
35
+
36
+ if tag == "l":
37
+ word = word
38
+ elif tag == "u":
39
+ word = word.capitalize()
40
+ # case with punctuation
41
+ else:
42
+ if tag[-1] == "l":
43
+ word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
44
+ elif tag[-1] == "u":
45
+ word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
46
+
47
+ if tag != "l":
48
+ word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
49
+
50
+ if subword == True:
51
+ result_words[-1] = word
52
+ else:
53
+ result_words.append(word)
54
+
55
+ return " ".join(result_words)
56
+
57
+
58
+
59
+ def get_result_text_ca (list_entity, text):
60
+ result_words = []
61
+ punc_tags = ['?', '!', ',', '.', ':']
62
+
63
+ for entity in list_entity:
64
+ start = entity["start"]
65
+ end = entity["end"]
66
+ tag = entity["entity"]
67
+ word = entity["word"]
68
+
69
+ # check punctuation
70
+ punc_in = next((p for p in punc_tags if p in tag), "")
71
+
72
+ subword = False
73
+ # check subwords
74
+ if word[0] != "Ġ":
75
+ subword = True
76
+ if punc_in != "":
77
+ word = result_words[-1].replace(punc_in, "") + text[start:end]
78
+ else:
79
+ word = result_words[-1] + text[start:end]
80
+ else:
81
+ word = text[start:end]
82
+
83
+ if tag == "l":
84
+ word = word
85
+ elif tag == "u":
86
+ word = word.capitalize()
87
+ # case with punctuation
88
+ else:
89
+ if tag[-1] == "l":
90
+ word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
91
+ elif tag[-1] == "u":
92
+ word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
93
+
94
+ if tag != "l":
95
+ word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
96
+
97
+ if subword == True:
98
+ result_words[-1] = word
99
+ else:
100
+ result_words.append(word)
101
+
102
+ return " ".join(result_words)
103
+
104
+
105
+ if __name__ == "__main__":
106
+ logo()
107
+ st.title('Sanivert Punctuation And Capitalization Restoration')
108
+
109
+ model_es = AutoModelForTokenClassification.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
110
+ tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
111
+ pipe_es = pipeline("token-classification", model=model_es, tokenizer=tokenizer_es)
112
+
113
+ model_ca = ModelForTokenClassification.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
114
+ tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
115
+ pipe_ca = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
116
+
117
+ model_pt = AutoModelForTokenClassification.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
118
+ tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
119
+ pipe_pt = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
120
+
121
+ input_text = st.selectbox(
122
+ label = "Choose an language",
123
+ options = ["Spanish", "Portuguese", "Catalan"]
124
+ )
125
+
126
+ st.subheader("Enter the text to be analyzed.")
127
+ text = st.text_input('Enter text') #text is stored in this variable
128
+ if input_text == "Spanish":
129
+ result_pipe = pipe_es(text)
130
+ out = get_result_text_es_pt(result_pipe, text, "es")
131
+ elif input_text == "Portuguese":
132
+ result_pipe = pipe_pt(text)
133
+ out = get_result_text_es_pt(result_pipe, text, "pt")
134
+ elif input_text == "Catalan":
135
+ result_pipe = pipe_ca(text)
136
+ out = get_result_text_ca(result_pipe, text)
137
+
138
+ out = get_prediction(text, input_text)
139
+ st.markdown(out, unsafe_allow_html=True)
140
+ text = ""
141
+
142
+
143
+