import streamlit as st from PIL import Image from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer def get_result_text_es_pt (list_entity, text, lang): result_words = [] tmp_word = "" if lang == "es": punc_tags = ['¿', '?', '¡', '!', ',', '.', ':'] else: punc_tags = ['?', '!', ',', '.', ':'] for idx, entity in enumerate(list_entity): tag = entity["entity"] word = entity["word"] start = entity["start"] end = entity["end"] # check punctuation punc_in = next((p for p in punc_tags if p in tag), "") subword = False # check subwords if word[0] == "#": subword = True if tmp_word == "": p_s = list_entity[idx-1]["start"] p_e = list_entity[idx-1]["end"] tmp_word = text[p_s:p_e] + text[start:end] else: tmp_word = tmp_word + text[start:end] word = tmp_word else: tmp_word = "" word = text[start:end] if tag == "l": word = word elif tag == "u": word = word.capitalize() # case with punctuation else: if tag[-1] == "l": word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in) elif tag[-1] == "u": word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in) if tag != "l": word = '' + word + '' if subword == True: result_words[-1] = word else: result_words.append(word) return " ".join(result_words) def get_result_text_ca (list_entity, text): result_words = [] punc_tags = ['?', '!', ',', '.', ':'] tmp_word = "" for idx, entity in enumerate(list_entity): start = entity["start"] end = entity["end"] tag = entity["entity"] word = entity["word"] # check punctuation punc_in = next((p for p in punc_tags if p in tag), "") subword = False # check subwords if word[0] != "Ġ": subword = True if tmp_word == "": p_s = list_entity[idx-1]["start"] p_e = list_entity[idx-1]["end"] tmp_word = text[p_s:p_e] + text[start:end] else: tmp_word = tmp_word + text[start:end] word = tmp_word else: tmp_word = "" word = text[start:end] if tag == "l": word = word elif tag == "u": word = word.capitalize() # case with punctuation else: if tag[-1] == "l": word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in) elif tag[-1] == "u": word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in) if tag != "l": word = '' + word + '' if subword == True: result_words[-1] = word else: result_words.append(word) return " ".join(result_words) if __name__ == "__main__": st.title('Sanivert Punctuation And Capitalization Restoration') model_es = AutoModelForTokenClassification.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert") tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert") pipe_es = pipeline("token-classification", model=model_es, tokenizer=tokenizer_es) model_ca = AutoModelForTokenClassification.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert") tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert") pipe_ca = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca) model_pt = AutoModelForTokenClassification.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert") tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert") pipe_pt = pipeline("token-classification", model=model_pt, tokenizer=tokenizer_pt) st.sidebar.image("vocali_logo.jpg") st.sidebar.subheader("Parque Científico de Murcia, Carretera de Madrid km 388. Complejo de Espinardo, 30100 Murcia") input_text = st.selectbox( label = "Choose an language", options = ["Spanish", "Portuguese", "Catalan"] ) st.subheader("Enter the text to be analyzed.") text = st.text_input('Enter text') #text is stored in this variable if input_text == "Spanish": result_pipe = pipe_es(text) out = get_result_text_es_pt(result_pipe, text, "es") elif input_text == "Portuguese": result_pipe = pipe_pt(text) out = get_result_text_es_pt(result_pipe, text, "pt") elif input_text == "Catalan": result_pipe = pipe_ca(text) out = get_result_text_ca(result_pipe, text) st.markdown(out, unsafe_allow_html=True) text = ""