import streamlit as st from PIL import Image from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts from htbuilder.units import percent, px from htbuilder.funcs import rgba, rgb def clear_text(): st.session_state.text = st.session_state.widget st.session_state.widget = "" def get_result_text_es_pt (list_entity, text, lang): result_words = [] tmp_word = "" if lang == "es": punc_tags = ['¿', '?', '¡', '!', ',', '.', ':'] else: punc_tags = ['?', '!', ',', '.', ':'] for idx, entity in enumerate(list_entity): tag = entity["entity"] word = entity["word"] start = entity["start"] end = entity["end"] # check punctuation punc_in = next((p for p in punc_tags if p in tag), "") subword = False # check subwords if word[0] == "#": subword = True if tmp_word == "": p_s = list_entity[idx-1]["start"] p_e = list_entity[idx-1]["end"] tmp_word = text[p_s:p_e] + text[start:end] else: tmp_word = tmp_word + text[start:end] word = tmp_word else: tmp_word = "" word = text[start:end] if tag == "l": word = word elif tag == "u": word = word.capitalize() # case with punctuation else: if tag[-1] == "l": word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in) elif tag[-1] == "u": word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in) if tag != "l": word = '' + word + '' if subword == True: result_words[-1] = word else: result_words.append(word) return " ".join(result_words) def get_result_text_ca (list_entity, text): result_words = [] punc_tags = ['?', '!', ',', '.', ':'] tmp_word = "" for idx, entity in enumerate(list_entity): start = entity["start"] end = entity["end"] tag = entity["entity"] word = entity["word"] # check punctuation punc_in = next((p for p in punc_tags if p in tag), "") subword = False # check subwords if word[0] != "Ġ": subword = True if tmp_word == "": p_s = list_entity[idx-1]["start"] p_e = list_entity[idx-1]["end"] tmp_word = text[p_s:p_e] + text[start:end] else: tmp_word = tmp_word + text[start:end] word = tmp_word else: tmp_word = "" word = text[start:end] if tag == "l": word = word elif tag == "u": word = word.capitalize() # case with punctuation else: if tag[-1] == "l": word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in) elif tag[-1] == "u": word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in) if tag != "l": word = '' + word + '' if subword == True: result_words[-1] = word else: result_words.append(word) return " ".join(result_words) def image(src_as_string, **style): return img(src=src_as_string, style=styles(**style)) def link(link, text, **style): return a(_href=link, _target="_blank", style=styles(**style))(text) def layout(*args): style = """ """ style_div = styles( position="fixed", left=0, bottom=0, margin=px(0, 0, 0, 0), width=percent(100), color="black", text_align="center", height="auto", opacity=1 ) style_hr = styles( display="block", margin=px(8, 8, "auto", "auto"), border_style="inset", border_width=px(2) ) body = p() foot = div( style=style_div )( hr( style=style_hr ), body ) st.markdown(style, unsafe_allow_html=True) for arg in args: if isinstance(arg, str): body(arg) elif isinstance(arg, HtmlElement): body(arg) st.markdown(str(foot), unsafe_allow_html=True) def footer(): myargs = [ "Made in ", image('vocali_logo.jpg', width=px(50), height=px(50)), link("https://vocali.net/", "VÓCALI"), "with funding ", image('logo_funding.jpg', height=px(50), width=px(150)), br(), "This work was funded by the Spanish Government, the Spanish Ministry of Economy and Digital Transformation through the Digital Transformation through the 'Recovery, Transformation and Resilience Plan' and also funded by the European Union NextGenerationEU/PRTR through the research project 2021/C005/0015007", ] layout(*myargs) if __name__ == "__main__": if "text" not in st.session_state: st.session_state.text = "" st.title('Sanivert Punctuation And Capitalization Restoration') model_es = AutoModelForTokenClassification.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert") tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert") pipe_es = pipeline("token-classification", model=model_es, tokenizer=tokenizer_es) model_ca = AutoModelForTokenClassification.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert") tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert") pipe_ca = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca) model_pt = AutoModelForTokenClassification.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert") tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert") pipe_pt = pipeline("token-classification", model=model_pt, tokenizer=tokenizer_pt) input_text = st.selectbox( label = "Choose an language", options = ["Spanish", "Portuguese", "Catalan"] ) st.subheader("Enter the text to be analyzed.") st.text_input('Enter text', key='widget', on_change=clear_text) #text is stored in this variable text = st.session_state.text print(text) if input_text == "Spanish": result_pipe = pipe_es(text) out = get_result_text_es_pt(result_pipe, text, "es") elif input_text == "Portuguese": result_pipe = pipe_pt(text) out = get_result_text_es_pt(result_pipe, text, "pt") elif input_text == "Catalan": result_pipe = pipe_ca(text) out = get_result_text_ca(result_pipe, text) st.markdown(out, unsafe_allow_html=True) footer()