File size: 6,439 Bytes
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import ASTConfig, ASTFeatureExtractor, ASTModel

BirdAST_FEATURE_EXTRACTOR = ASTFeatureExtractor()
DEFAULT_SR = 16_000
DEFAULT_BACKBONE = "MIT/ast-finetuned-audioset-10-10-0.4593"
DEFAULT_N_CLASSES = 728
DEFAULT_ACTIVATION = "silu"
DEFAULT_N_MLP_LAYERS = 1


def birdast_seq_preprocess(audio_array, sr=DEFAULT_SR):
    """
    Preprocess audio array for BirdAST model
    audio_array: np.array, audio array of the recording, shape (n_samples,) Note: The audio array should be normalized to [-1, 1]
    sr: int, sampling rate of the audio array (default: 16_000)
    
    Note: 
    1. The audio array should be normalized to [-1, 1].
    2. The audio length should be 10 seconds (or 10.24 seconds). Longer audio will be truncated.
    """
    # Extract features
    features = BirdAST_FEATURE_EXTRACTOR(audio_array, sampling_rate=sr, padding="max_length", return_tensors="pt")
    
    # Convert to PyTorch tensor
    spectrogram = torch.tensor(features['input_values']).squeeze(0)
    
    return spectrogram


def birdast_seq_inference(
    model_weights, 
    spectrogram, 
    device = 'cpu', 
    backbone_name=DEFAULT_BACKBONE, 
    n_classes=DEFAULT_N_CLASSES,
    activation=DEFAULT_ACTIVATION,
    n_mlp_layers=DEFAULT_N_MLP_LAYERS
    ):
    
    """
    Perform inference on BirdAST model
    model_weights: list, list of model weights
    spectrogram: torch.Tensor, spectrogram tensor, shape (batch_size, n_frames, n_mels,)
    device: str, device to run inference (default: 'cpu')
    backbone_name: str, name of the backbone model (default: 'MIT/ast-finetuned-audioset-10-10-0.4593')
    n_classes: int, number of classes (default: 728)
    activation: str, activation function (default: 'silu')
    n_mlp_layers: int, number of MLP layers (default: 1)
    
    Returns:
    predictions: np.array, array of predictions, shape (n_models, batch_size, n_classes)
    """
    
    model = BirdAST_Seq(
        backbone_name=backbone_name, 
        n_classes=n_classes,
        n_mlp_layers=n_mlp_layers,
        activation=activation
    )
    
    predict_collects = []
    
    for _weight in model_weights:
        model.load_state_dict(torch.load(_weight, map_location=device))
        if device != 'cpu': model.to(device)
        model.eval()
        
        with torch.no_grad():
            if device != 'cpu': spectrogram = spectrogram.to(device)
            
            #check if the input tensor is in the correct shape
            if spectrogram.dim() == 2:
                spectrogram = spectrogram.unsqueeze(0) #-> (batch_size, n_frames, n_mels)
                
            output = model(spectrogram)
            logits = output['logits']
            predictions = F.softmax(logits, dim=1)
            predict_collects.append(predictions)
            
    if device != 'cpu':
        predict_collects = [pred.cpu() for pred in predict_collects]
        
    predict_collects = torch.cat(predict_collects, dim=0).numpy()
            
    return predict_collects

      
class SelfAttentionPooling(nn.Module):
    """
    Implementation of SelfAttentionPooling 
    Original Paper: Self-Attention Encoding and Pooling for Speaker Recognition
    https://arxiv.org/pdf/2008.01077v1.pdf
    """
    def __init__(self, input_dim):
        super(SelfAttentionPooling, self).__init__()
        self.W = nn.Linear(input_dim, 1)
        self.softmax = nn.Softmax(dim=1)
        
    def forward(self, batch_rep):
        """
        input:
            batch_rep : size (N, T, H), N: batch size, T: sequence length, H: Hidden dimension
        attention_weight:
            att_w : size (N, T, 1)
        return:
            utter_rep: size (N, H)
        """
        att_w = self.softmax(self.W(batch_rep).squeeze(-1)).unsqueeze(-1)
        utter_rep = torch.sum(batch_rep * att_w, dim=1)

        return utter_rep


class BirdAST_Seq(nn.Module):
    
    def __init__(self, backbone_name, n_classes, n_mlp_layers=1, activation='silu'):
        super(BirdAST_Seq, self).__init__()
        
        # pre-trained backbone
        backbone_config = ASTConfig.from_pretrained(backbone_name)
        self.ast = ASTModel.from_pretrained(backbone_name, config=backbone_config)
        self.hidden_size = backbone_config.hidden_size
        
        # set activation functions
        if activation == 'relu':
            self.activation = nn.ReLU()
        elif activation == 'silu':
            self.activation = nn.SiLU()
        elif activation == 'gelu':
            self.activation = nn.GELU()
        else:
            raise ValueError("Unsupported activation function. Choose 'relu', 'silu' or 'gelu'")
        
        #define self-attention pooling layer
        self.sa_pool = SelfAttentionPooling(self.hidden_size)
        
        # define MLP layers with activation
        layers = []
        for _ in range(n_mlp_layers):
            layers.append(nn.Linear(self.hidden_size, self.hidden_size))
            layers.append(self.activation)
        layers.append(nn.Linear(self.hidden_size, n_classes))
        self.mlp = nn.Sequential(*layers)
        
    def forward(self, spectrogram):
        # spectrogram: (batch_size, n_mels, n_frames)
        # output: (batch_size, n_classes)
        
        ast_output = self.ast(spectrogram, output_hidden_states=False)
        hidden_state = ast_output.last_hidden_state
        pool_output = self.sa_pool(hidden_state)
        logits = self.mlp(pool_output)
        
        return {'logits': logits}
    
    
    
if __name__ == '__main__':
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    # example usage of BirdAST_Seq
    # create random audio array
    audio_array = np.random.randn(160_000 * 10)
    
    # Preprocess audio array
    spectrogram = birdast_seq_preprocess(audio_array)
    
    model_weights_dir = '/workspace/voice_of_jungle/training_logs'
    
    # Load model weights
    model_weights = [f'{model_weights_dir}/BirdAST_SeqPool_GroupKFold_fold_{i}.pth' for i in range(5)]
    
    # Perform inference
    predictions = birdast_seq_inference(model_weights, spectrogram.unsqueeze(0))
    
    # Plot predictions
    fig, ax = plt.subplots()
    for i, pred in enumerate(predictions):
        ax.plot(pred[0], label=f'model_{i}')
    ax.legend()
    fig.savefig('test_BirdAST_Seq.png')
    
    print("Inference completed successfully!")