voj / app.py
amroa's picture
remove local storage of images
503f310
raw
history blame
12.1 kB
import warnings
warnings.filterwarnings("ignore")
import os
import numpy as np
import pandas as pd
from typing import Iterable
from styling import js, seafoam, css, DESCRIPTION
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import requests
import torch
import shutil
import librosa
import torch.nn.functional as F
# Image gallery
from fetch_img import download_images, scientific_to_species_code
# Import the necessary functions from the voj package
from audio_class_predictor import predict_class
from bird_ast_model import birdast_preprocess, birdast_inference
from bird_ast_seq_model import birdast_seq_preprocess, birdast_seq_inference
from utils import plot_wave, plot_mel, download_model, bandpass_filter
# Define the default parameters
ASSET_DIR = "./assets"
DEFUALT_SR = 16_000
DEFUALT_HIGH_CUT = 8_000
DEFUALT_LOW_CUT = 1_000
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Use Device: {DEVICE}")
if not os.path.exists(ASSET_DIR):
os.makedirs(ASSET_DIR)
# define the assets for the models
birdast_assets = {
"model_weights": [
f"https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_fold_{i}.pth"
for i in range(5)
],
"label_mapping": "https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_label_map.csv",
"preprocess_fn": birdast_preprocess,
"inference_fn": birdast_inference,
}
birdast_seq_assets = {
"model_weights": [
f"https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_fold_{i}.pth"
for i in range(5)
],
"label_mapping": "https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_label_map.csv",
"preprocess_fn": birdast_seq_preprocess,
"inference_fn": birdast_seq_inference,
}
# maintain a dictionary of assets
ASSET_DICT = {
"BirdAST": birdast_assets,
"BirdAST_Seq": birdast_seq_assets,
}
def run_inference_with_model(audio_clip, sr, model_name):
# download the model assets
assets = ASSET_DICT[model_name]
model_weights_url = assets["model_weights"]
label_map_url = assets["label_mapping"]
preprocess_fn = assets["preprocess_fn"]
inference_fn = assets["inference_fn"]
# download the model weights
model_weights = []
for model_weight in model_weights_url:
weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
if not os.path.exists(weight_file):
download_model(model_weight, weight_file)
model_weights.append(weight_file)
# download the label mapping
label_map_csv = os.path.join(ASSET_DIR, label_map_url.split("/")[-1])
if not os.path.exists(label_map_csv):
download_model(label_map_url, label_map_csv)
# load the label mapping
label_mapping = pd.read_csv(label_map_csv)
species_id_to_name = {row["species_id"]: row["scientific_name"] for _, row in label_mapping.iterrows()}
# preprocess the audio clip
spectrogram = preprocess_fn(audio_clip, sr=sr)
# run inference
predictions = inference_fn(model_weights, spectrogram, device=DEVICE)
# aggregate the results
final_predicts = predictions.mean(axis=0)
topk_values, topk_indices = torch.topk(torch.from_numpy(final_predicts), 10)
results = []
for idx, scores in zip(topk_indices, topk_values):
species_name = species_id_to_name[idx.item()]
probability = scores.item() * 100
results.append([species_name, probability])
return results
def predict(audio, start, end, model_name="BirdAST_Seq"):
raw_sr, audio_array = audio
if audio_array.ndim > 1:
audio_array = audio_array.mean(axis=1) # convert to mono
print(f"Audio shape raw: {audio_array.shape}, sr: {raw_sr}")
# sainty checks
len_audio = audio_array.shape[0] / raw_sr
if start >= end:
raise gr.Error(f"`start` ({start}) must be smaller than end ({end}s)")
if audio_array.shape[0] < start * raw_sr:
raise gr.Error(f"`start` ({start}) must be smaller than audio duration ({len_audio:.0f}s)")
if audio_array.shape[0] < end * raw_sr:
end = audio_array.shape[0] / (1.0*raw_sr)
audio_array = np.array(audio_array, dtype=np.float32) / 32768.0
audio_array = audio_array[int(start*raw_sr) : int(end*raw_sr)]
if raw_sr != DEFUALT_SR:
# run bandpass filter & resample
audio_array = bandpass_filter(audio_array, DEFUALT_LOW_CUT, DEFUALT_HIGH_CUT, raw_sr)
audio_array = librosa.resample(audio_array, orig_sr=raw_sr, target_sr=DEFUALT_SR)
print(f"Resampled Audio shape: {audio_array.shape}")
audio_array = audio_array.astype(np.float32)
# predict audio class
audio_class = predict_class(audio_array)
fig_spectrogram = plot_mel(DEFUALT_SR, audio_array)
fig_waveform = plot_wave(DEFUALT_SR, audio_array)
# run inference with model
print(f"Running inference with model: {model_name}")
species_class = run_inference_with_model(audio_array, DEFUALT_SR, model_name)
print("Species is ", species_class[0][0].strip().replace("_", " "))
images = prepare_images(species_class[0][0].strip().replace("_", " "))
if len(images) == 0:
images.append(("noimg.png", "No image"))
return audio_class, species_class, fig_waveform, fig_spectrogram, images
REFERENCES = """
# Appendix
We have applied the AudioMAE model to pre-classify the 23000+ unlabelled audio clips collected from the Greater Manaus region in the Amazon rainforest. The results of the audio type classification can be found in the following [link](https://drive.google.com/file/d/1uOT88LDnBD-Z3YcFz1e9XjvW2ugCo6EI/view?usp=drive_link). We hope that the pre-classification results can help researchers better exploring the vast collection of audio recordings and facilitate the study of biodiversity in the Amazon rainforest.
# References
[1] Torkington, S. (2023, February 7). 50% of the global economy is under threat from biodiversity loss. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2023/02/biodiversity-nature-loss-cop15/.
[2] Huang, P.-Y., Xu, H., Li, J., Baevski, A., Auli, M., Galuba, W., Metze, F., & Feichtenhofer, C. (2022). Masked Autoencoders that Listen. In NeurIPS.
[3] https://www.kaggle.com/code/dima806/bird-species-by-sound-detection
# Acknowledgements
We would like to thank all organizers, mentors and participants of the AI+Environment EcoHackathon 2024 event for their unwavering support and collaboration. We extend our gratitude to ETH BiodivX, GainForest and ETH AI Center for providing data, facilities and resources that enabled us to analyse the rich data in different ways. Our special thanks to David Dao, Sarah Tariq, Alessandro Amodio for always being there to help us! πŸ™πŸ™πŸ™
"""
# Function to handle model selection
def handle_model_selection(model_name, download_status):
# Inform user that download is starting
# gr.Info(f"Downloading model weights for {model_name}...")
print(f"Downloading model weights for {model_name}...")
if model_name is None:
model_name = "BirdAST"
assets = ASSET_DICT[model_name]
model_weights_url = assets["model_weights"]
download_flag = True
try:
total_files = len(model_weights_url)
for idx, model_weight in enumerate(model_weights_url):
weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
print(weight_file)
if not os.path.exists(weight_file):
download_status = f"Downloading {idx + 1} of {total_files}"
download_model(model_weight, weight_file)
if not os.path.exists(weight_file):
download_flag = False
break
if download_flag:
download_status = f"Model <{model_name}> is ready! πŸŽ‰πŸŽ‰πŸŽ‰\nUsing Device: {DEVICE.upper()}"
else:
download_status = f"An error occurred while downloading model weights."
except Exception as e:
download_status = f"An error occurred while downloading model weights."
return download_status
# Image generation
def prepare_images(scientific_name: str):
# Get species code
scode = scientific_to_species_code(scientific_name)
if not scode:
return []
# Clear folder assets' images
for filename in os.listdir(ASSET_DIR):
# Construct full file path
file_path = os.path.join(ASSET_DIR, filename)
# Check if the file is a .jpg, .jpeg, or .png
if file_path.lower().endswith(('.jpg', '.jpeg', '.png')):
# If yes, delete the file
os.remove(file_path)
print(f"Deleted: {file_path}")
# Save images to assets
urls = download_images(f"https://ebird.org/species/{scode}")
# Return array of remote image urls labelled
nsplit = scientific_name.split(" ")
abbreviate_name = nsplit[0][0] + "." + " " + nsplit[1]
# If empty, do not iterate
if not urls:
return []
return [(url, abbreviate_name) for url in urls]
sp_and_cl = """<div align="center">
<b> <h2> Class and Species Prediction </h2> </b>
</div>"""
sig_prop = """<div align="center">
<b> <h2> Signal Visualization </h2> </b>
</div>"""
imgs = """<div align="center">
<b> <h2> Bird Gallery </h2> </b>
</div>"""
with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
gr.Markdown('<div class="logo-container"><img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" width="50px" alt="vojlogo"></div>')
gr.Markdown('<div id="gradio-animation"></div>')
gr.Markdown(DESCRIPTION)
# add dropdown for model selection
model_names = ['BirdAST', 'BirdAST_Seq'] #, 'EfficientNet']
model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names)
download_status = gr.Textbox(label="Model Status", lines=3, value='', interactive=False) # Non-interactive textbox for status
model_dropdown.change(handle_model_selection, inputs=[model_dropdown, download_status], outputs=download_status)
with gr.Row():
with gr.Column(elem_classes="column-container"):
start_time_input = gr.Number(label="Start Time", value=0, elem_classes="number-input full-height")
end_time_input = gr.Number(label="End Time", value=10, elem_classes="number-input full-height")
with gr.Column():
audio_input = gr.Audio(label="Input Audio", elem_classes="full-height")
gr.Markdown(sp_and_cl)
with gr.Column():
with gr.Row():
raw_class_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Class Prediction")
species_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Species Prediction")
gr.Markdown(sig_prop)
with gr.Column():
with gr.Row():
waveform_output = gr.Plot(label="Waveform")
spectrogram_output = gr.Plot(label="Spectrogram")
gr.Markdown(imgs)
gallery = gallery = gr.Gallery(label="Species Images", show_label=False, elem_id="gallery",columns=[3], rows=[1], object_fit="contain", height="auto")
gr.Button("Predict").click(predict, [audio_input, start_time_input, end_time_input, model_dropdown], [raw_class_output, species_output, waveform_output, spectrogram_output, gallery])
gr.Examples(
examples=[
["XC226833-Chestnut-belted_20Chat-Tyrant_20A_2010989.mp3", 0, 10],
["XC812290-Many-striped-Canastero_Teaben_Pe_1jul2022_FSchmitt_1.mp3", 0, 10],
["XC763511-Synallaxis-maronica_Bagua-grande_MixPre-1746.mp3", 0, 10]
],
inputs=[audio_input, start_time_input, end_time_input]
)
gr.Markdown(REFERENCES)
demo.launch(share = True)
## logo: <img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" alt="vojlogo" border="0">
## cactus: <img src="https://i.ibb.co/3sW2mJN/spur.jpg" alt="spur" border="0">