|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import pytorch_lightning as pl |
|
from transformers import AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification |
|
|
|
DEFAULT_SR = 16_000 |
|
DEFAULT_BACKBONE = "MIT/ast-finetuned-audioset-10-10-0.4593" |
|
DEFAULT_N_CLASSES = 728 |
|
MODEL_STR = "dima806/bird_sounds_classification" |
|
RATE_HZ = 16000 |
|
|
|
MAX_SECONDS = 10 |
|
|
|
MAX_LENGTH = RATE_HZ * MAX_SECONDS |
|
|
|
|
|
FEATURE_EXTRACTOR = AutoFeatureExtractor.from_pretrained(MODEL_STR) |
|
|
|
|
|
|
|
def birdvec_preprocess(audio_array, sr=DEFAULT_SR): |
|
""" |
|
Preprocess audio array for BirdAST model |
|
audio_array: np.array, audio array of the recording, shape (n_samples,) Note: The audio array should be normalized to [-1, 1] |
|
sr: int, sampling rate of the audio array (default: 16_000) |
|
|
|
Note: |
|
1. The audio array should be normalized to [-1, 1]. |
|
2. The audio length should be 10 seconds (or 10.24 seconds). Longer audio will be truncated. |
|
""" |
|
|
|
features = FEATURE_EXTRACTOR(audio_array, sampling_rate=DEFAULT_SR, max_length=MAX_LENGTH, truncation=True, return_tensors="pt") |
|
|
|
return features.input_values |
|
|
|
|
|
def birdvec_inference( |
|
model_weights, |
|
spectrogram, |
|
device = 'cpu', |
|
backbone_name=None, |
|
n_classes=728, |
|
activation=None, |
|
n_mlp_layers=None |
|
): |
|
|
|
""" |
|
Perform inference on BirdAST model |
|
model_weights: list, list of model weights |
|
spectrogram: torch.Tensor, spectrogram tensor, shape (batch_size, n_frames, n_mels,) |
|
device: str, device to run inference (default: 'cpu') |
|
backbone_name: str, name of the backbone model (default: 'MIT/ast-finetuned-audioset-10-10-0.4593') |
|
n_classes: int, number of classes (default: 728) |
|
activation: str, activation function (default: 'silu') |
|
n_mlp_layers: int, number of MLP layers (default: 1) |
|
|
|
Returns: |
|
predictions: np.array, array of predictions, shape (n_models, batch_size, n_classes) |
|
""" |
|
|
|
|
|
|
|
predict_collects = [] |
|
for _weights in model_weights: |
|
|
|
model = BirdSongClassifier.load_from_checkpoint(_weights, map_location=device, class_weights = None) |
|
if device != 'cpu': model.to(device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
if device != 'cpu': spectrogram = spectrogram.to(device) |
|
|
|
output = model(spectrogram) |
|
logits = output['logits'] |
|
probs = F.softmax(logits, dim=-1) |
|
predict_collects.append(probs) |
|
|
|
if device != 'cpu': |
|
predict_collects = [pred.cpu() for pred in predict_collects] |
|
|
|
predict_collects = torch.cat(predict_collects, dim=0).numpy() |
|
|
|
return predict_collects |
|
|
|
|
|
class BirdSongClassifier(pl.LightningModule): |
|
def __init__(self, class_weights): |
|
super().__init__() |
|
config = AutoConfig.from_pretrained("dima806/bird_sounds_classification") |
|
config.num_labels = 728 |
|
self.model = AutoModelForAudioClassification.from_config(config) |
|
|
|
def forward(self, x): |
|
return self.model(x) |