Spaces:
Sleeping
Sleeping
Concat first prompt with initial prompt
Browse files- app.py +19 -3
- src/vad.py +5 -2
app.py
CHANGED
@@ -89,9 +89,17 @@ class WhisperTranscriber:
|
|
89 |
|
90 |
def transcribe_file(self, model: whisper.Whisper, audio_path: str, language: str, task: str = None, vad: str = None,
|
91 |
vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, **decodeOptions: dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Callable for processing an audio file
|
93 |
-
whisperCallable = lambda audio, prompt, detected_language : model.transcribe(audio, \
|
94 |
-
language=language if language else detected_language, task=task,
|
|
|
|
|
95 |
|
96 |
# The results
|
97 |
if (vad == 'silero-vad'):
|
@@ -113,10 +121,18 @@ class WhisperTranscriber:
|
|
113 |
result = periodic_vad.transcribe(audio_path, whisperCallable, PeriodicTranscriptionConfig(periodic_duration=vadMaxMergeSize, max_prompt_window=vadPromptWindow))
|
114 |
else:
|
115 |
# Default VAD
|
116 |
-
result = whisperCallable(audio_path, None, None)
|
117 |
|
118 |
return result
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1):
|
121 |
# Use Silero VAD
|
122 |
if (self.vad_model is None):
|
|
|
89 |
|
90 |
def transcribe_file(self, model: whisper.Whisper, audio_path: str, language: str, task: str = None, vad: str = None,
|
91 |
vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, **decodeOptions: dict):
|
92 |
+
|
93 |
+
initial_prompt = decodeOptions.pop('initial_prompt', None)
|
94 |
+
|
95 |
+
if ('task' in decodeOptions):
|
96 |
+
task = decodeOptions.pop('task')
|
97 |
+
|
98 |
# Callable for processing an audio file
|
99 |
+
whisperCallable = lambda audio, segment_index, prompt, detected_language : model.transcribe(audio, \
|
100 |
+
language=language if language else detected_language, task=task, \
|
101 |
+
initial_prompt=self._concat_prompt(initial_prompt, prompt) if segment_index == 0 else prompt, \
|
102 |
+
**decodeOptions)
|
103 |
|
104 |
# The results
|
105 |
if (vad == 'silero-vad'):
|
|
|
121 |
result = periodic_vad.transcribe(audio_path, whisperCallable, PeriodicTranscriptionConfig(periodic_duration=vadMaxMergeSize, max_prompt_window=vadPromptWindow))
|
122 |
else:
|
123 |
# Default VAD
|
124 |
+
result = whisperCallable(audio_path, 0, None, None)
|
125 |
|
126 |
return result
|
127 |
|
128 |
+
def _concat_prompt(self, prompt1, prompt2):
|
129 |
+
if (prompt1 is None):
|
130 |
+
return prompt2
|
131 |
+
elif (prompt2 is None):
|
132 |
+
return prompt1
|
133 |
+
else:
|
134 |
+
return prompt1 + " " + prompt2
|
135 |
+
|
136 |
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1):
|
137 |
# Use Silero VAD
|
138 |
if (self.vad_model is None):
|
src/vad.py
CHANGED
@@ -100,7 +100,7 @@ class AbstractTranscription(ABC):
|
|
100 |
audio: str
|
101 |
The audio file.
|
102 |
|
103 |
-
whisperCallable: Callable[[Union[str, np.ndarray, torch.Tensor], str, str], dict[str, Union[dict, Any]]]
|
104 |
The callback that is used to invoke Whisper on an audio file/buffer. The first parameter is the audio file/buffer,
|
105 |
the second parameter is an optional text prompt, and the last is the current detected language. The return value is the result of the Whisper call.
|
106 |
|
@@ -147,8 +147,11 @@ class AbstractTranscription(ABC):
|
|
147 |
languageCounter = Counter()
|
148 |
detected_language = None
|
149 |
|
|
|
|
|
150 |
# For each time segment, run whisper
|
151 |
for segment in merged:
|
|
|
152 |
segment_start = segment['start']
|
153 |
segment_end = segment['end']
|
154 |
segment_expand_amount = segment.get('expand_amount', 0)
|
@@ -169,7 +172,7 @@ class AbstractTranscription(ABC):
|
|
169 |
|
170 |
print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ",
|
171 |
segment_duration, "expanded: ", segment_expand_amount, "prompt: ", segment_prompt, "language: ", detected_language)
|
172 |
-
segment_result = whisperCallable(segment_audio, segment_prompt, detected_language)
|
173 |
|
174 |
adjusted_segments = self.adjust_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration)
|
175 |
|
|
|
100 |
audio: str
|
101 |
The audio file.
|
102 |
|
103 |
+
whisperCallable: Callable[[Union[str, np.ndarray, torch.Tensor], int, str, str], dict[str, Union[dict, Any]]]
|
104 |
The callback that is used to invoke Whisper on an audio file/buffer. The first parameter is the audio file/buffer,
|
105 |
the second parameter is an optional text prompt, and the last is the current detected language. The return value is the result of the Whisper call.
|
106 |
|
|
|
147 |
languageCounter = Counter()
|
148 |
detected_language = None
|
149 |
|
150 |
+
segment_index = -1
|
151 |
+
|
152 |
# For each time segment, run whisper
|
153 |
for segment in merged:
|
154 |
+
segment_index += 1
|
155 |
segment_start = segment['start']
|
156 |
segment_end = segment['end']
|
157 |
segment_expand_amount = segment.get('expand_amount', 0)
|
|
|
172 |
|
173 |
print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ",
|
174 |
segment_duration, "expanded: ", segment_expand_amount, "prompt: ", segment_prompt, "language: ", detected_language)
|
175 |
+
segment_result = whisperCallable(segment_audio, segment_index, segment_prompt, detected_language)
|
176 |
|
177 |
adjusted_segments = self.adjust_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration)
|
178 |
|