VarunSivamani commited on
Commit
6f6b73c
·
1 Parent(s): c50b588

application file

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging
3
+ import gradio as gr
4
+
5
+ model_name = "microsoft/phi-2"
6
+ model = AutoModelForCausalLM.from_pretrained(
7
+ model_name,
8
+ trust_remote_code=True
9
+ )
10
+ model.config.use_cache = False
11
+
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
+ tokenizer.pad_token = tokenizer.eos_token
14
+
15
+ adapter_path = 'checkpoint-500'
16
+ model.load_adapter(adapter_path)
17
+
18
+
19
+ def generate_context(prompt, tokens=300):
20
+ pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=tokens)
21
+ sentence = "[INST] " + prompt + " [/INST]"
22
+ result = pipe(sentence)
23
+ text = result[0]['generated_text']
24
+
25
+ return text[len(sentence):]
26
+
27
+
28
+ examples = [
29
+ ["What is a large language model?", 200],
30
+ ["Explain the process of photosynthesis", 250]
31
+ ]
32
+
33
+ demo = gr.Interface(
34
+ fn=generate_context,
35
+ inputs=[
36
+ gr.Textbox(label="How may I help you ? 🤖"),
37
+ gr.Slider(200, 500, value=300, label="Sentence length", step=50)
38
+ ],
39
+ outputs="text",
40
+ examples=examples
41
+ )
42
+
43
+ demo.launch(debug=True)