DevBM commited on
Commit
225bf42
·
verified ·
1 Parent(s): 7c45485

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -10,12 +10,19 @@ import wikipediaapi
10
  from b import b
11
 
12
  nltk.download('punkt')
 
 
13
  from nltk.tokenize import sent_tokenize
14
 
15
  # Load spaCy model
16
  nlp = spacy.load("en_core_web_sm")
17
  # wiki_wiki = wikipediaapi.Wikipedia('en')
18
 
 
 
 
 
 
19
  # Load T5 model and tokenizer
20
  model_name = "DevBM/t5-large-squad"
21
  model = T5ForConditionalGeneration.from_pretrained(model_name)
@@ -61,11 +68,11 @@ def map_keywords_to_sentences(text, keywords, context_window_size):
61
  return keyword_sentence_mapping
62
 
63
  # Function to perform entity linking using Wikipedia API
64
- # def entity_linking(keyword):
65
- # page = wiki_wiki.page(keyword)
66
- # if page.exists():
67
- # return page.fullurl
68
- # return None
69
 
70
  # Function to generate questions using beam search
71
  def generate_question(context, answer, num_beams=5):
@@ -114,13 +121,13 @@ if st.button("Generate Questions"):
114
  for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
115
  if i >= num_questions:
116
  break
117
- # linked_entity = entity_linking(keyword)
118
  question = generate_question(context, keyword, num_beams=num_beams)
119
  st.write(f"**Context:** {context}")
120
  st.write(f"**Answer:** {keyword}")
121
  st.write(f"**Question:** {question}")
122
- # if linked_entity:
123
- # st.write(f"**Entity Link:** {linked_entity}")
124
  st.write("---")
125
  data.append((context, keyword, question))
126
 
 
10
  from b import b
11
 
12
  nltk.download('punkt')
13
+ nltk.download('stopwords')
14
+ nltk.download('brown')
15
  from nltk.tokenize import sent_tokenize
16
 
17
  # Load spaCy model
18
  nlp = spacy.load("en_core_web_sm")
19
  # wiki_wiki = wikipediaapi.Wikipedia('en')
20
 
21
+ # Initialize Wikipedia API with a user agent
22
+ user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
23
+ wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
24
+
25
+
26
  # Load T5 model and tokenizer
27
  model_name = "DevBM/t5-large-squad"
28
  model = T5ForConditionalGeneration.from_pretrained(model_name)
 
68
  return keyword_sentence_mapping
69
 
70
  # Function to perform entity linking using Wikipedia API
71
+ def entity_linking(keyword):
72
+ page = wiki_wiki.page(keyword)
73
+ if page.exists():
74
+ return page.fullurl
75
+ return None
76
 
77
  # Function to generate questions using beam search
78
  def generate_question(context, answer, num_beams=5):
 
121
  for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
122
  if i >= num_questions:
123
  break
124
+ linked_entity = entity_linking(keyword)
125
  question = generate_question(context, keyword, num_beams=num_beams)
126
  st.write(f"**Context:** {context}")
127
  st.write(f"**Answer:** {keyword}")
128
  st.write(f"**Question:** {question}")
129
+ if linked_entity:
130
+ st.write(f"**Entity Link:** {linked_entity}")
131
  st.write("---")
132
  data.append((context, keyword, question))
133