VatsalPatel18 commited on
Commit
7119b92
·
2 Parent(s): 36dd86e b814581

Merge branch 'main' of https://huggingface.co/spaces/VatsalPatel18/HNSCC-MultiOmics-Risk-Feature-Extraction

Browse files
Files changed (2) hide show
  1. app2.py +0 -146
  2. train.py +0 -105
app2.py DELETED
@@ -1,146 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
-
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
-
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
-
146
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train.py DELETED
@@ -1,105 +0,0 @@
1
- import torch
2
- from torch.utils.data import DataLoader
3
- from torch_geometric.data import Batch
4
- from sklearn.model_selection import train_test_split
5
- import pickle
6
-
7
- from OmicsConfig import OmicsConfig
8
- from MultiOmicsGraphAttentionAutoencoderModel import MultiOmicsGraphAttentionAutoencoderModel
9
- from GATv2EncoderModel import GATv2EncoderModel
10
- from GATv2DecoderModel import GATv2DecoderModel
11
- from EdgeWeightPredictorModel import EdgeWeightPredictorModel
12
-
13
- def collate_graph_data(batch):
14
- return Batch.from_data_list(batch)
15
-
16
- def create_data_loader(graph_data_dict, batch_size=1, shuffle=True):
17
- graph_data = list(graph_data_dict.values())
18
- return DataLoader(graph_data, batch_size=batch_size, shuffle=shuffle, collate_fn=collate_graph_data)
19
-
20
- # Load your data
21
- graph_data_dict = torch.load('data/graph_data_dictN.pth')
22
-
23
- # Split the data
24
- train_data, temp_data = train_test_split(list(graph_data_dict.items()), train_size=0.6, random_state=42)
25
- val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)
26
-
27
- # Convert lists back into dictionaries
28
- train_data = dict(train_data)
29
- val_data = dict(val_data)
30
- test_data = dict(test_data)
31
-
32
- # Define the configuration for the model
33
- autoencoder_config = OmicsConfig(
34
- in_channels=17,
35
- edge_attr_channels=1,
36
- out_channels=1,
37
- original_feature_size=17,
38
- learning_rate=0.01,
39
- num_layers=2,
40
- edge_decoder_hidden_sizes=[128, 64],
41
- edge_decoder_activations=['ReLU', 'ReLU']
42
- )
43
-
44
- # Initialize the model
45
- autoencoder_model = MultiOmicsGraphAttentionAutoencoderModel(autoencoder_config)
46
-
47
- # Create data loaders
48
- train_loader = create_data_loader(train_data, batch_size=4, shuffle=True)
49
- val_loader = create_data_loader(val_data, batch_size=4, shuffle=False)
50
- test_loader = create_data_loader(test_data, batch_size=4, shuffle=False)
51
-
52
- # Define the device
53
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
54
-
55
- # Training process
56
- def train_autoencoder(autoencoder_model, train_loader, validation_loader, epochs, device):
57
- autoencoder_model.to(device)
58
- train_losses = []
59
- val_losses = []
60
-
61
- for epoch in range(epochs):
62
- # Train
63
- autoencoder_model.train()
64
- train_loss, train_cosine_similarity = autoencoder_model.train_model(train_loader, device)
65
- print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Train Cosine Similarity: {train_cosine_similarity:.4f}")
66
- train_losses.append(train_loss)
67
-
68
- # Validate
69
- autoencoder_model.eval()
70
- val_loss, val_cosine_similarity = autoencoder_model.validate(validation_loader, device)
71
- print(f"Epoch {epoch+1}/{epochs}, Validation Loss: {val_loss:.4f}, Validation Cosine Similarity: {val_cosine_similarity:.4f}")
72
- val_losses.append(val_loss)
73
-
74
- # Save the trained encoder weights
75
- trained_encoder_path = "lc_models/MultiOmicsAutoencoder/trained_encoder"
76
- autoencoder_model.encoder.save_pretrained(trained_encoder_path)
77
-
78
- # Save the trained decoder weights
79
- trained_decoder_path = "lc_models/MultiOmicsAutoencoder/trained_decoder"
80
- autoencoder_model.decoder.save_pretrained(trained_decoder_path)
81
-
82
- # Save the trained edge weight predictor weights (if needed separately)
83
- trained_edge_weight_predictor_path = "lc_models/MultiOmicsAutoencoder/trained_edge_weight_predictor"
84
- autoencoder_model.decoder.edge_weight_predictor.save_pretrained(trained_edge_weight_predictor_path)
85
-
86
- # Optionally save the entire autoencoder again if you want to have a complete package
87
- trained_autoencoder_path = "lc_models/MultiOmicsAutoencoder/trained_autoencoder"
88
- autoencoder_model.save_pretrained(trained_autoencoder_path)
89
-
90
- return train_losses, val_losses
91
-
92
- # Train and save the model
93
- train_losses, val_losses = train_autoencoder(autoencoder_model, train_loader, val_loader, epochs=10, device=device)
94
-
95
- # Evaluate the model
96
- test_loss, test_accuracy = autoencoder_model.evaluate(test_loader, device)
97
- print(f"Test Loss: {test_loss:.4f}")
98
- print(f"Test Accuracy: {test_accuracy:.4%}")
99
-
100
- # Save the training and validation losses
101
- with open('./results/train_loss.pkl', 'wb') as f:
102
- pickle.dump(train_losses, f)
103
-
104
- with open('./results/val_loss.pkl', 'wb') as f:
105
- pickle.dump(val_losses, f)