File size: 11,976 Bytes
0035a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Sample new images from a pre-trained DiT.
"""
import os
import sys
import math
import docx
try:
    import utils

    from diffusion import create_diffusion
    from download import find_model
except:
    # sys.path.append(os.getcwd())
    sys.path.append(os.path.split(sys.path[0])[0])
    # sys.path[0]                 
    # os.path.split(sys.path[0])    

    
    import utils

    from diffusion import create_diffusion
    from download import find_model

import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import argparse
import torchvision

from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from torchvision import transforms
sys.path.append("..")
from datasets import video_transforms
from utils import mask_generation_before
from natsort import natsorted
from diffusers.utils.import_utils import is_xformers_available


doc = docx.Document("/mnt/petrelfs/zhouyan/tmp/ζ˜Ÿι™…ζ—…θ‘Œ.docx")
start = 1
p_dict = {}
for param in doc.paragraphs:
    p_dict[start] = param.text
    start = start+1
# def get_input(args):
def get_input(path,args):
    input_path = path
    # input_path = args.input_path
    transform_video = transforms.Compose([
            video_transforms.ToTensorVideo(), # TCHW
            video_transforms.ResizeVideo((args.image_h, args.image_w)),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
        ])
    temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
    if input_path is not None:
        print(f'loading video from {input_path}')
        if os.path.isdir(input_path):
            file_list = os.listdir(input_path)
            video_frames = []
            if args.mask_type.startswith('onelast'):
                num = int(args.mask_type.split('onelast')[-1])
                # get first and last frame
                first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
                last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
                first_frame = torch.as_tensor(np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                last_frame = torch.as_tensor(np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                for i in range(num):
                    video_frames.append(first_frame)
                # add zeros to frames
                num_zeros = args.num_frames-2*num
                for i in range(num_zeros):
                    zeros = torch.zeros_like(first_frame)
                    video_frames.append(zeros)
                for i in range(num):
                    video_frames.append(last_frame)
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
                video_frames = transform_video(video_frames)
            else:
                for file in file_list:
                    if file.endswith('jpg') or file.endswith('png'):
                        image = torch.as_tensor(np.array(Image.open(os.path.join(input_path,file)), dtype=np.uint8, copy=True)).unsqueeze(0)
                        video_frames.append(image)
                    else:
                        continue
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
                video_frames = transform_video(video_frames)
            return video_frames, n
        elif os.path.isfile(input_path):
            _, full_file_name = os.path.split(input_path)
            file_name, extention = os.path.splitext(full_file_name)
            if extention == '.jpg' or extention == '.png':
                # raise TypeError('a single image is not supported yet!!')
                print("reading video from a image")
                video_frames = []
                num = int(args.mask_type.split('first')[-1])
                first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                for i in range(num):
                    video_frames.append(first_frame)
                num_zeros = args.num_frames-num
                for i in range(num_zeros):
                    zeros = torch.zeros_like(first_frame)
                    video_frames.append(zeros)
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
                video_frames = transform_video(video_frames)
                return video_frames, n
            else:
                raise TypeError(f'{extention} is not supported !!')
        else:
            raise ValueError('Please check your path input!!')
    else:
        # raise ValueError('Need to give a video or some images')
        print('given video is None, using text to video')
        video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
        args.mask_type = 'all'
        video_frames = transform_video(video_frames)
        n = 0
        return video_frames, n

def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
    b,f,c,h,w=video_input.shape
    latent_h = args.image_size[0] // 8
    latent_w = args.image_size[1] // 8

    # prepare inputs
    if args.use_fp16:
        z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
        masked_video = masked_video.to(dtype=torch.float16)
        mask = mask.to(dtype=torch.float16)
    else:
        z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w


    masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
    masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
    masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
    mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
   
    # classifier_free_guidance
    if args.do_classifier_free_guidance:
        masked_video = torch.cat([masked_video] * 2)
        mask = torch.cat([mask] * 2)
        z = torch.cat([z] * 2)
        prompt_all = [prompt] + [args.negative_prompt]
        
    else:
        masked_video = masked_video
        mask = mask
        z = z
        prompt_all = [prompt]

    text_prompt = text_encoder(text_prompts=prompt_all, train=False)
    model_kwargs = dict(encoder_hidden_states=text_prompt, 
                            class_labels=None, 
                            cfg_scale=args.cfg_scale,
                            use_fp16=args.use_fp16,) # tav unet

    # Sample images:
    if args.sample_method == 'ddim':
        samples = diffusion.ddim_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
            mask=mask, x_start=masked_video, use_concat=args.use_mask
        )
    elif args.sample_method == 'ddpm':
        samples = diffusion.p_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
            mask=mask, x_start=masked_video, use_concat=args.use_mask
        )
    samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
    if args.use_fp16:
        samples = samples.to(dtype=torch.float16)

    video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
    video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
    return video_clip

def main(args):
    # Setup PyTorch:
    if args.seed:
        torch.manual_seed(args.seed)
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    # device = "cpu"

    if args.ckpt is None:
        raise ValueError("Please specify a checkpoint path using --ckpt <path>")

    # Load model:
    latent_h = args.image_size[0] // 8
    latent_w = args.image_size[1] // 8
    args.image_h = args.image_size[0]
    args.image_w = args.image_size[1]
    args.latent_h = latent_h
    args.latent_w = latent_w
    print('loading model')
    model = get_models(args).to(device)

    if args.use_compile:
        model = torch.compile(model)
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            model.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # load model 
    ckpt_path = args.ckpt 
    state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema']
    model.load_state_dict(state_dict)
    print('loading succeed')

    model.eval()  # important!
    pretrained_model_path = args.pretrained_model_path
    diffusion = create_diffusion(str(args.num_sampling_steps))
    vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
    text_encoder = TextEmbedder(pretrained_model_path).to(device)
    if args.use_fp16:
        print('Warnning: using half percision for inferencing!')
        vae.to(dtype=torch.float16)
        model.to(dtype=torch.float16)
        text_encoder.to(dtype=torch.float16)

    # Labels to condition the model with (feel free to change):
    prompt = args.text_prompt
    if prompt ==[]:
        prompt = args.input_path.split('/')[-1].split('.')[0].replace('_', ' ')
    else:
        prompt = prompt[0]
    prompt_base = prompt.replace(' ','_')
    prompt = prompt + args.additional_prompt



    if not os.path.exists(os.path.join(args.save_img_path)):
        os.makedirs(os.path.join(args.save_img_path))
    for file in os.listdir(args.img_path):
        video_input, reserve_frames = get_input(os.path.join(args.img_path,file),args)
        video_input = video_input.to(device).unsqueeze(0)
        mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device)
        masked_video = video_input * (mask == 0)
        prompt = "tilt up, high quality, stable "
        prompt = prompt + args.additional_prompt
        video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
        video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
        torchvision.io.write_video(os.path.join(args.save_img_path,  prompt[0:20]+file+ '.mp4'), video_, fps=8)
    # video_input, researve_frames = get_input(args) # f,c,h,w
    # video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w
    # mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w
    # # TODO: change the first3 to last3
    # masked_video = video_input * (mask == 0)

    # video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
    # video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
    # torchvision.io.write_video(os.path.join(args.save_img_path,  prompt_base+ '.mp4'), video_, fps=8)
    print(f'save in {args.save_img_path}')


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/sample_mask.yaml")
    parser.add_argument("--run-time", type=int, default=0)
    args = parser.parse_args()
    omega_conf = OmegaConf.load(args.config)
    omega_conf.run_time = args.run_time
    main(omega_conf)