Vlogger-ShowMaker / utils.py
GrayShine's picture
Upload 60 files
2e5e07d verified
import os
import math
import torch
import logging
import subprocess
import numpy as np
import torch.distributed as dist
# from torch._six import inf
from torch import inf
from PIL import Image
from typing import Union, Iterable
from collections import OrderedDict
from torch.utils.tensorboard import SummaryWriter
_tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]]
#################################################################################
# Training Helper Functions #
#################################################################################
def fetch_files_by_numbers(start_number, count, file_list):
file_numbers = range(start_number, start_number + count)
found_files = []
for file_number in file_numbers:
file_number_padded = str(file_number).zfill(2)
for file_name in file_list:
if file_name.endswith(file_number_padded + '.csv'):
found_files.append(file_name)
break # Stop searching once a file is found for the current number
return found_files
#################################################################################
# Training Clip Gradients #
#################################################################################
def get_grad_norm(
parameters: _tensor_or_tensors, norm_type: float = 2.0) -> torch.Tensor:
r"""
Copy from torch.nn.utils.clip_grad_norm_
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:`parameters` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
Returns:
Total norm of the parameter gradients (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(grads) == 0:
return torch.tensor(0.)
device = grads[0].device
if norm_type == inf:
norms = [g.detach().abs().max().to(device) for g in grads]
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
else:
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
return total_norm
def clip_grad_norm_(
parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0,
error_if_nonfinite: bool = False, clip_grad = True) -> torch.Tensor:
r"""
Copy from torch.nn.utils.clip_grad_norm_
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:`parameters` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
Returns:
Total norm of the parameter gradients (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
max_norm = float(max_norm)
norm_type = float(norm_type)
if len(grads) == 0:
return torch.tensor(0.)
device = grads[0].device
if norm_type == inf:
norms = [g.detach().abs().max().to(device) for g in grads]
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
else:
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
# print(total_norm)
if clip_grad:
if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()):
raise RuntimeError(
f'The total norm of order {norm_type} for gradients from '
'`parameters` is non-finite, so it cannot be clipped. To disable '
'this error and scale the gradients by the non-finite norm anyway, '
'set `error_if_nonfinite=False`')
clip_coef = max_norm / (total_norm + 1e-6)
# Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so
# avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization
# when the gradients do not reside in CPU memory.
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
for g in grads:
g.detach().mul_(clip_coef_clamped.to(g.device))
# gradient_cliped = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
# print(gradient_cliped)
return total_norm
def separation_content_motion(video_clip):
"""
separate coontent and motion in a given video
Args:
video_clip, a give video clip, [B F C H W]
Return:
base frame, [B, 1, C, H, W]
motions, [B, F-1, C, H, W],
the first is base frame,
the second is motions based on base frame
"""
total_frames = video_clip.shape[1]
base_frame = video_clip[0]
motions = [video_clip[i] - base_frame for i in range(1, total_frames)]
motions = torch.cat(motions, dim=1)
return base_frame, motions
def get_experiment_dir(root_dir, args):
if args.use_compile:
root_dir += '-Compile' # speedup by torch compile
if args.fixed_spatial:
root_dir += '-FixedSpa'
if args.enable_xformers_memory_efficient_attention:
root_dir += '-Xfor'
if args.gradient_checkpointing:
root_dir += '-Gc'
if args.mixed_precision:
root_dir += '-Amp'
if args.image_size == 512:
root_dir += '-512'
return root_dir
#################################################################################
# Training Logger #
#################################################################################
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
if dist.get_rank() == 0: # real logger
logging.basicConfig(
level=logging.INFO,
# format='[\033[34m%(asctime)s\033[0m] %(message)s',
format='[%(asctime)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def create_accelerate_logger(logging_dir, is_main_process=False):
"""
Create a logger that writes to a log file and stdout.
"""
if is_main_process: # real logger
logging.basicConfig(
level=logging.INFO,
# format='[\033[34m%(asctime)s\033[0m] %(message)s',
format='[%(asctime)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def create_tensorboard(tensorboard_dir):
"""
Create a tensorboard that saves losses.
"""
if dist.get_rank() == 0: # real tensorboard
# tensorboard
writer = SummaryWriter(tensorboard_dir)
return writer
def write_tensorboard(writer, *args):
'''
write the loss information to a tensorboard file.
Only for pytorch DDP mode.
'''
if dist.get_rank() == 0: # real tensorboard
writer.add_scalar(args[0], args[1], args[2])
#################################################################################
# EMA Update/ DDP Training Utils #
#################################################################################
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
if param.requires_grad:
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def cleanup():
"""
End DDP training.
"""
dist.destroy_process_group()
def setup_distributed(backend="nccl", port=None):
"""Initialize distributed training environment.
support both slurm and torch.distributed.launch
see torch.distributed.init_process_group() for more details
"""
num_gpus = torch.cuda.device_count()
if "SLURM_JOB_ID" in os.environ:
rank = int(os.environ["SLURM_PROCID"])
world_size = int(os.environ["SLURM_NTASKS"])
node_list = os.environ["SLURM_NODELIST"]
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
# specify master port
if port is not None:
os.environ["MASTER_PORT"] = str(port)
elif "MASTER_PORT" not in os.environ:
# os.environ["MASTER_PORT"] = "29566"
os.environ["MASTER_PORT"] = str(29566 + num_gpus)
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = addr
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["LOCAL_RANK"] = str(rank % num_gpus)
os.environ["RANK"] = str(rank)
else:
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
# torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
)
#################################################################################
# Testing Utils #
#################################################################################
def save_video_grid(video, nrow=None):
b, t, h, w, c = video.shape
if nrow is None:
nrow = math.ceil(math.sqrt(b))
ncol = math.ceil(b / nrow)
padding = 1
video_grid = torch.zeros((t, (padding + h) * nrow + padding,
(padding + w) * ncol + padding, c), dtype=torch.uint8)
print(video_grid.shape)
for i in range(b):
r = i // ncol
c = i % ncol
start_r = (padding + h) * r
start_c = (padding + w) * c
video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i]
return video_grid
def save_videos_grid_tav(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
from einops import rearrange
import imageio
import torchvision
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
# os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
#################################################################################
# MMCV Utils #
#################################################################################
def collect_env():
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.utils import collect_env as collect_base_env
from mmcv.utils import get_git_hash
"""Collect the information of the running environments."""
env_info = collect_base_env()
env_info['MMClassification'] = get_git_hash()[:7]
for name, val in env_info.items():
print(f'{name}: {val}')
print(torch.cuda.get_arch_list())
print(torch.version.cuda)
#################################################################################
# Long video generation Utils #
#################################################################################
def mask_generation_before(mask_type, shape, dtype, device, dropout_prob=0.0, use_image_num=0):
b, f, c, h, w = shape
if mask_type.startswith('first'):
num = int(mask_type.split('first')[-1])
mask_f = torch.cat([torch.zeros(1, num, 1, 1, 1, dtype=dtype, device=device),
torch.ones(1, f-num, 1, 1, 1, dtype=dtype, device=device)], dim=1)
mask = mask_f.expand(b, -1, c, h, w)
elif mask_type.startswith('all'):
mask = torch.ones(b,f,c,h,w,dtype=dtype,device=device)
elif mask_type.startswith('onelast'):
num = int(mask_type.split('onelast')[-1])
mask_one = torch.zeros(1,1,1,1,1, dtype=dtype, device=device)
mask_mid = torch.ones(1,f-2*num,1,1,1,dtype=dtype, device=device)
mask_last = torch.zeros_like(mask_one)
mask = torch.cat([mask_one]*num + [mask_mid] + [mask_last]*num, dim=1)
mask = mask.expand(b, -1, c, h, w)
else:
raise ValueError(f"Invalid mask type: {mask_type}")
return mask