Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ from PIL import Image
|
|
27 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
28 |
from transformers.image_transforms import convert_to_rgb
|
29 |
|
30 |
-
|
31 |
def auto_inpainting(video_input, masked_video, mask, prompt, image, vae, text_encoder, image_encoder, diffusion, model, device, cfg_scale, img_cfg_scale, negative_prompt=""):
|
32 |
global use_fp16
|
33 |
image_prompt_embeds = None
|
@@ -82,7 +82,7 @@ def auto_inpainting(video_input, masked_video, mask, prompt, image, vae, text_en
|
|
82 |
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
|
83 |
return video_clip
|
84 |
|
85 |
-
|
86 |
def auto_inpainting_temp_split(video_input, masked_video, mask, prompt, image, vae, text_encoder, image_encoder, diffusion, model, device, scfg_scale, tcfg_scale, img_cfg_scale, negative_prompt=""):
|
87 |
global use_fp16
|
88 |
image_prompt_embeds = None
|
@@ -153,6 +153,7 @@ vae = None
|
|
153 |
text_encoder = None
|
154 |
image_encoder = None
|
155 |
clip_image_processor = None
|
|
|
156 |
def init_model():
|
157 |
global device
|
158 |
global output_path
|
@@ -211,6 +212,7 @@ init_model()
|
|
211 |
# ========================================
|
212 |
# Video Generation
|
213 |
# ========================================
|
|
|
214 |
def video_generation(text, image, scfg_scale, tcfg_scale, img_cfg_scale, diffusion):
|
215 |
with torch.no_grad():
|
216 |
print("begin generation", flush=True)
|
@@ -272,9 +274,11 @@ def video_prediction(text, image, scfg_scale, tcfg_scale, img_cfg_scale, prefram
|
|
272 |
return video_path
|
273 |
|
274 |
|
|
|
275 |
# ========================================
|
276 |
# Judge Generation or Prediction
|
277 |
# ========================================
|
|
|
278 |
def gen_or_pre(text_input, image_input, scfg_scale, tcfg_scale, img_cfg_scale, preframe_input, diffusion_step):
|
279 |
default_step = [25, 40, 50, 100, 125, 200, 250]
|
280 |
difference = [abs(item - diffusion_step) for item in default_step]
|
|
|
27 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
28 |
from transformers.image_transforms import convert_to_rgb
|
29 |
|
30 |
+
+@spaces.GPU
|
31 |
def auto_inpainting(video_input, masked_video, mask, prompt, image, vae, text_encoder, image_encoder, diffusion, model, device, cfg_scale, img_cfg_scale, negative_prompt=""):
|
32 |
global use_fp16
|
33 |
image_prompt_embeds = None
|
|
|
82 |
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
|
83 |
return video_clip
|
84 |
|
85 |
+
+@spaces.GPU
|
86 |
def auto_inpainting_temp_split(video_input, masked_video, mask, prompt, image, vae, text_encoder, image_encoder, diffusion, model, device, scfg_scale, tcfg_scale, img_cfg_scale, negative_prompt=""):
|
87 |
global use_fp16
|
88 |
image_prompt_embeds = None
|
|
|
153 |
text_encoder = None
|
154 |
image_encoder = None
|
155 |
clip_image_processor = None
|
156 |
+
+@spaces.GPU
|
157 |
def init_model():
|
158 |
global device
|
159 |
global output_path
|
|
|
212 |
# ========================================
|
213 |
# Video Generation
|
214 |
# ========================================
|
215 |
+
+@spaces.GPU
|
216 |
def video_generation(text, image, scfg_scale, tcfg_scale, img_cfg_scale, diffusion):
|
217 |
with torch.no_grad():
|
218 |
print("begin generation", flush=True)
|
|
|
274 |
return video_path
|
275 |
|
276 |
|
277 |
+
|
278 |
# ========================================
|
279 |
# Judge Generation or Prediction
|
280 |
# ========================================
|
281 |
+
+@spaces.GPU
|
282 |
def gen_or_pre(text_input, image_input, scfg_scale, tcfg_scale, img_cfg_scale, preframe_input, diffusion_step):
|
283 |
default_step = [25, 40, 50, 100, 125, 200, 250]
|
284 |
difference = [abs(item - diffusion_step) for item in default_step]
|