|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
import torch |
|
from llava.model import LlavaMistralForCausalLM |
|
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
|
|
|
|
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda"): |
|
|
|
kwargs = {} |
|
|
|
if device != "cuda": |
|
kwargs['device_map'] = {"": device} |
|
|
|
if load_8bit: |
|
kwargs['load_in_8bit'] = True |
|
elif load_4bit: |
|
kwargs['load_in_4bit'] = True |
|
kwargs['quantization_config'] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
) |
|
else: |
|
kwargs['torch_dtype'] = torch.float16 |
|
|
|
if 'llava' in model_name.lower(): |
|
|
|
if 'mistral' in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = LlavaMistralForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=False, |
|
use_flash_attention_2=False, |
|
**kwargs |
|
) |
|
else: |
|
|
|
if model_base is not None: |
|
|
|
from peft import PeftModel |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) |
|
print(f"Loading LoRA weights from {model_path}") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print(f"Merging weights") |
|
model = model.merge_and_unload() |
|
print('Convert to FP16...') |
|
model.to(torch.float16) |
|
else: |
|
use_fast = False |
|
if 'mpt' in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
|
|
image_processor = None |
|
|
|
if 'llava' in model_name.lower(): |
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model() |
|
vision_tower.to(device=device, dtype=torch.float16) |
|
model.model.mm_projector.to(device=device, dtype=torch.float16) |
|
model.to(device=device, dtype=torch.float16) |
|
image_processor = vision_tower.image_processor |
|
|
|
if hasattr(model.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
|
|
return tokenizer, model, image_processor, context_len |
|
|