import os os.system('pip install auto_gptq-0.4.1+cu118-cp310-cp310-linux_x86_64.whl') import streamlit as st import torch from auto_gptq import AutoGPTQForCausalLM from transformers import AutoTokenizer, TextStreamer, pipeline from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_community.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline from langchain_core.prompts import PromptTemplate from langchain.chains import RetrievalQA from streamlit_chat import message # Check if device is available DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" # Initialize everything in session state to avoid reloading if "initialized" not in st.session_state: st.session_state.initialized = False if not st.session_state.initialized: # Load PDF loader = PyPDFLoader("Medical_Book.pdf") docs = loader.load() # Initialize embeddings embeddings = HuggingFaceInstructEmbeddings( model_name="hkunlp/instructor-large", model_kwargs={"device": DEVICE} ) # Split documents into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) texts = text_splitter.split_documents(docs) # Create Chroma vectorstore db = Chroma.from_documents(texts, embeddings, persist_directory="db") # Load model and tokenizer model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ" model_basename = "model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized( model_name_or_path, revision="gptq-4bit-128g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, inject_fused_attention=False, device=DEVICE, quantize_config=None, ) # Set system prompt DEFAULT_SYSTEM_PROMPT = """ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. """.strip() def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: return f""" [INST] <> {system_prompt} <> {prompt} [/INST] """.strip() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) text_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024, temperature=0, top_p=0.95, repetition_penalty=1.15, streamer=streamer, ) llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0}) SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer." template = generate_prompt( """ {context} Question: {question} """, system_prompt=SYSTEM_PROMPT, ) prompt = PromptTemplate(template=template, input_variables=["context", "question"]) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={"k": 2}), return_source_documents=True, chain_type_kwargs={"prompt": prompt}, ) st.session_state.qa_chain = qa_chain st.session_state.initialized = True st.title("Medical Chatbot") if "history" not in st.session_state: st.session_state.history = [] user_input = st.text_input("Ask a question:", key="input") if st.button("Submit"): if user_input: result = st.session_state.qa_chain(user_input) answer = result st.session_state.history.append({"question": user_input, "answer": answer}) # Display chat history using streamlit-chat for i, chat in enumerate(st.session_state.history): message(chat['question'], is_user=True, key=f"user_{i}") message(chat['answer'], key=f"bot_{i}")