Spaces:
Sleeping
Sleeping
Fix Question #2
Browse files- app.py +46 -52
- chainlit.md +0 -6
- requirements.txt +2 -0
app.py
CHANGED
@@ -7,10 +7,14 @@ from langchain_community.document_loaders import PyMuPDFLoader
|
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
from langchain_community.vectorstores import Qdrant
|
|
|
|
|
10 |
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
11 |
from langchain_core.prompts import PromptTemplate
|
|
|
12 |
from langchain.schema.runnable.config import RunnableConfig
|
13 |
from langchain.globals import set_debug
|
|
|
14 |
|
15 |
set_debug(False)
|
16 |
|
@@ -30,54 +34,38 @@ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
|
|
30 |
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
|
31 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
32 |
|
33 |
-
# ---- GLOBAL DECLARATIONS ---- #
|
34 |
-
|
35 |
-
# -- RETRIEVAL -- #
|
36 |
-
"""
|
37 |
-
1. Load Documents from Text File
|
38 |
-
2. Split Documents into Chunks
|
39 |
-
3. Load HuggingFace Embeddings (remember to use the URL we set above)
|
40 |
-
4. Index Files if they do not exist, otherwise load the vectorstore
|
41 |
-
"""
|
42 |
### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
|
43 |
### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
|
48 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
49 |
split_documents = text_splitter.split_documents(documents)
|
50 |
|
51 |
### 3. LOAD HUGGINGFACE EMBEDDINGS
|
52 |
-
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
)
|
57 |
-
|
58 |
-
# Step 6: Create a custom retriever
|
59 |
-
# class CustomQdrantRetriever:
|
60 |
-
# def __init__(self, vectorstore, top_k=5):
|
61 |
-
# self.vectorstore = vectorstore
|
62 |
-
# self.top_k = top_k
|
63 |
-
|
64 |
-
# def __call__(self, query):
|
65 |
-
# embedded_query = self.vectorstore.embedding_function(query)
|
66 |
-
# search_result = vectorstore.search(
|
67 |
-
# # collection_name=collection_name,
|
68 |
-
# query_vector=embedded_query,
|
69 |
-
# limit=self.top_k
|
70 |
-
# )
|
71 |
-
# documents = [
|
72 |
-
# {"page_content": hit.payload["text"], "metadata": hit.payload}
|
73 |
-
# for hit in search_result
|
74 |
-
# ]
|
75 |
-
# return documents
|
76 |
|
77 |
FAISS_VECTOR_STORE = "FAISS"
|
78 |
QDRANT_VECTOR_STORE = "QDRANT"
|
79 |
|
80 |
-
VECTOR_STORE =
|
81 |
|
82 |
hf_retriever = ""
|
83 |
|
@@ -86,7 +74,7 @@ if VECTOR_STORE == FAISS_VECTOR_STORE:
|
|
86 |
VECTOR_STORE_DIR = os.path.join(DATA_DIR, "vectorstore")
|
87 |
VECTOR_STORE_PATH = os.path.join(VECTOR_STORE_DIR, "index.faiss")
|
88 |
|
89 |
-
FAISS_MAX_FETCH_SIZE =
|
90 |
FAISS_MAX_BATCH_SIZE = 32
|
91 |
if os.path.exists(VECTOR_STORE_PATH):
|
92 |
vectorstore = FAISS.load_local(
|
@@ -94,7 +82,6 @@ if VECTOR_STORE == FAISS_VECTOR_STORE:
|
|
94 |
hf_embeddings,
|
95 |
allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
|
96 |
)
|
97 |
-
hf_retriever = vectorstore.as_retriever(search_kwargs={"k": FAISS_MAX_FETCH_SIZE, "fetch_k": FAISS_MAX_FETCH_SIZE})
|
98 |
print("Loaded Vectorstore at " + VECTOR_STORE_DIR)
|
99 |
else:
|
100 |
print("Indexing Files")
|
@@ -108,7 +95,8 @@ if VECTOR_STORE == FAISS_VECTOR_STORE:
|
|
108 |
vectorstore.add_documents(split_documents[i:i+FAISS_MAX_BATCH_SIZE])
|
109 |
vectorstore.save_local(VECTOR_STORE_DIR)
|
110 |
|
111 |
-
hf_retriever = vectorstore.as_retriever(search_kwargs={"k": FAISS_MAX_FETCH_SIZE, "fetch_k": FAISS_MAX_FETCH_SIZE})
|
|
|
112 |
else:
|
113 |
QDRANT_MAX_FETCH_SIZE = 2
|
114 |
QDRANT_MAX_BATCH_SIZE = 32
|
@@ -127,7 +115,8 @@ else:
|
|
127 |
|
128 |
# hf_retriever = CustomQdrantRetriever(vectorstore=vectorstore, top_k=QDRANT_MAX_FETCH_SIZE)
|
129 |
|
130 |
-
hf_retriever = vectorstore.as_retriever(search_kwargs={"k": 2})
|
|
|
131 |
|
132 |
# -- AUGMENTED -- #
|
133 |
"""
|
@@ -158,15 +147,17 @@ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
|
158 |
"""
|
159 |
|
160 |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
161 |
-
hf_llm = HuggingFaceEndpoint(
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
)
|
|
|
|
|
170 |
|
171 |
@cl.author_rename
|
172 |
def rename(original_author: str):
|
@@ -176,7 +167,7 @@ def rename(original_author: str):
|
|
176 |
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
|
177 |
"""
|
178 |
rename_dict = {
|
179 |
-
"Assistant" : "
|
180 |
}
|
181 |
return rename_dict.get(original_author, original_author)
|
182 |
|
@@ -215,6 +206,9 @@ async def main(message: cl.Message):
|
|
215 |
{"query": message.content},
|
216 |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
217 |
):
|
218 |
-
|
|
|
|
|
|
|
219 |
|
220 |
await msg.send()
|
|
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
from langchain_community.vectorstores import Qdrant
|
10 |
+
from langchain_openai import ChatOpenAI
|
11 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
12 |
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
13 |
from langchain_core.prompts import PromptTemplate
|
14 |
+
from langchain_core.messages.ai import AIMessageChunk
|
15 |
from langchain.schema.runnable.config import RunnableConfig
|
16 |
from langchain.globals import set_debug
|
17 |
+
from llama_parse import LlamaParse
|
18 |
|
19 |
set_debug(False)
|
20 |
|
|
|
34 |
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
|
35 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
|
38 |
### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
|
39 |
+
parser = LlamaParse(result_type='markdown', verbose=True, language='en')
|
40 |
+
|
41 |
+
pdf_documents = parser.load_data('./data/10Q-AirBnB.pdf')
|
42 |
+
|
43 |
+
class DataObj:
|
44 |
+
def __init__(self, data):
|
45 |
+
for key, value in data.items():
|
46 |
+
setattr(self, key, value)
|
47 |
+
|
48 |
+
# LlamaParse produces documents that don't have `page_content` attribute expected by Recursive Splitter`
|
49 |
+
document_dicts = [{"page_content": d.text, "metadata": {}} for d in pdf_documents]
|
50 |
+
documents = [DataObj(d) for d in document_dicts]
|
51 |
+
# print(documents[0].page_content)
|
52 |
|
53 |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
|
54 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50)
|
55 |
split_documents = text_splitter.split_documents(documents)
|
56 |
|
57 |
### 3. LOAD HUGGINGFACE EMBEDDINGS
|
58 |
+
# hf_embeddings = HuggingFaceEndpointEmbeddings(
|
59 |
+
# model=HF_EMBED_ENDPOINT,
|
60 |
+
# task="feature-extraction",
|
61 |
+
# huggingfacehub_api_token=HF_TOKEN,
|
62 |
+
# )
|
63 |
+
hf_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
FAISS_VECTOR_STORE = "FAISS"
|
66 |
QDRANT_VECTOR_STORE = "QDRANT"
|
67 |
|
68 |
+
VECTOR_STORE = QDRANT_VECTOR_STORE
|
69 |
|
70 |
hf_retriever = ""
|
71 |
|
|
|
74 |
VECTOR_STORE_DIR = os.path.join(DATA_DIR, "vectorstore")
|
75 |
VECTOR_STORE_PATH = os.path.join(VECTOR_STORE_DIR, "index.faiss")
|
76 |
|
77 |
+
FAISS_MAX_FETCH_SIZE = 5
|
78 |
FAISS_MAX_BATCH_SIZE = 32
|
79 |
if os.path.exists(VECTOR_STORE_PATH):
|
80 |
vectorstore = FAISS.load_local(
|
|
|
82 |
hf_embeddings,
|
83 |
allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
|
84 |
)
|
|
|
85 |
print("Loaded Vectorstore at " + VECTOR_STORE_DIR)
|
86 |
else:
|
87 |
print("Indexing Files")
|
|
|
95 |
vectorstore.add_documents(split_documents[i:i+FAISS_MAX_BATCH_SIZE])
|
96 |
vectorstore.save_local(VECTOR_STORE_DIR)
|
97 |
|
98 |
+
# hf_retriever = vectorstore.as_retriever(search_kwargs={"k": FAISS_MAX_FETCH_SIZE, "fetch_k": FAISS_MAX_FETCH_SIZE})
|
99 |
+
hf_retriever = vectorstore.as_retriever()
|
100 |
else:
|
101 |
QDRANT_MAX_FETCH_SIZE = 2
|
102 |
QDRANT_MAX_BATCH_SIZE = 32
|
|
|
115 |
|
116 |
# hf_retriever = CustomQdrantRetriever(vectorstore=vectorstore, top_k=QDRANT_MAX_FETCH_SIZE)
|
117 |
|
118 |
+
# hf_retriever = vectorstore.as_retriever(search_kwargs={"k": 2})
|
119 |
+
hf_retriever = vectorstore.as_retriever()
|
120 |
|
121 |
# -- AUGMENTED -- #
|
122 |
"""
|
|
|
147 |
"""
|
148 |
|
149 |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
150 |
+
# hf_llm = HuggingFaceEndpoint(
|
151 |
+
# endpoint_url=HF_LLM_ENDPOINT,
|
152 |
+
# max_new_tokens=64,
|
153 |
+
# top_k=10,
|
154 |
+
# top_p=0.95,
|
155 |
+
# temperature=0.3,
|
156 |
+
# repetition_penalty=1.15,
|
157 |
+
# huggingfacehub_api_token=HF_TOKEN,
|
158 |
+
# )
|
159 |
+
|
160 |
+
hf_llm = ChatOpenAI(model="gpt-4o")
|
161 |
|
162 |
@cl.author_rename
|
163 |
def rename(original_author: str):
|
|
|
167 |
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
|
168 |
"""
|
169 |
rename_dict = {
|
170 |
+
"Assistant" : "AirBnB 10Q agent"
|
171 |
}
|
172 |
return rename_dict.get(original_author, original_author)
|
173 |
|
|
|
206 |
{"query": message.content},
|
207 |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
208 |
):
|
209 |
+
if (isinstance(chunk, AIMessageChunk)):
|
210 |
+
await msg.stream_token(chunk.content)
|
211 |
+
else:
|
212 |
+
await msg.stream_token(chunk)
|
213 |
|
214 |
await msg.send()
|
chainlit.md
CHANGED
@@ -1,9 +1,3 @@
|
|
1 |
# AirBnB 10K Chat
|
2 |
|
3 |
### I am your personal assistant that can help answer questions about AirBnB 10K filing
|
4 |
-
|
5 |
-
**Lessons not learned**
|
6 |
-
- Chainlit.md is not rendering on the app
|
7 |
-
- Not able to answer structured query (Q2) correctly
|
8 |
-
- HuggingFace space setup takes way too long. Solved it through CPU upgrade
|
9 |
-
- Work around Huggingface library restrictions on Context window
|
|
|
1 |
# AirBnB 10K Chat
|
2 |
|
3 |
### I am your personal assistant that can help answer questions about AirBnB 10K filing
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -4,6 +4,8 @@ langchain_community==0.2.5
|
|
4 |
langchain_core==0.2.9
|
5 |
langchain_huggingface==0.0.3
|
6 |
langchain_text_splitters==0.2.1
|
|
|
|
|
7 |
python-dotenv==1.0.1
|
8 |
faiss-cpu==1.8.0
|
9 |
pymupdf==1.24.6
|
|
|
4 |
langchain_core==0.2.9
|
5 |
langchain_huggingface==0.0.3
|
6 |
langchain_text_splitters==0.2.1
|
7 |
+
langchain-openai==0.1.14
|
8 |
+
llama-parse==0.4.5
|
9 |
python-dotenv==1.0.1
|
10 |
faiss-cpu==1.8.0
|
11 |
pymupdf==1.24.6
|