Spaces:
Sleeping
Sleeping
File size: 2,323 Bytes
1c37bdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import streamlit as st
from streamlit_chat import message
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from hugchat import hugchat
st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
# Sidebar contents
with st.sidebar:
st.title('🤗💬 HugChat App')
st.markdown('''
## About
This app is an LLM-powered chatbot built using:
- [Streamlit](https://streamlit.io/)
- [HugChat](https://github.com/Soulter/hugging-chat-api)
- [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model
💡 Note: No API key required!
''')
add_vertical_space(5)
st.write('Made with ❤️ by [Data Professor](https://youtube.com/dataprofessor)')
# Generate empty lists for generated and past.
## generated stores AI generated responses
if 'generated' not in st.session_state:
st.session_state['generated'] = ["I'm HugChat, How may I help you?"]
## past stores User's questions
if 'past' not in st.session_state:
st.session_state['past'] = ['Hi!']
# Layout of input/response containers
input_container = st.container()
colored_header(label='', description='', color_name='blue-30')
response_container = st.container()
# User input
## Function for taking user provided prompt as input
def get_text():
input_text = st.text_input("You: ", "", key="input")
return input_text
## Applying the user input box
with input_container:
user_input = get_text()
# Response output
## Function for taking user prompt as input followed by producing AI generated responses
def generate_response(prompt):
chatbot = hugchat.ChatBot()
response = chatbot.chat(prompt)
return response
## Conditional display of AI generated responses as a function of user provided prompts
with response_container:
if user_input:
response = generate_response(user_input)
st.session_state.past.append(user_input)
st.session_state.generated.append(response)
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])):
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
message(st.session_state["generated"][i], key=str(i)) |