import streamlit as st from hugchat import hugchat from hugchat.login import Login import os # App title st.set_page_config(page_title="🤗💬 HugChat") # Hugging Face Credentials with st.sidebar: st.title('🤗💬 HugChat') hf_email = st.text_input('Enter E-mail:', type='password') hf_pass = st.text_input('Enter password:', type='password') if not (hf_email and hf_pass): st.warning('Please enter your credentials!', icon='⚠️') else: st.success('Proceed to entering your prompt message!', icon='👉') st.markdown('📖 Learn how to build this app in this [blog](https://blog.streamlit.io/how-to-build-an-llm-powered-chatbot-with-streamlit/)!') # Store LLM generated responses if "messages" not in st.session_state: st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] # Display or clear chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) def clear_chat_history(): st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] st.sidebar.button('Clear Chat History', on_click=clear_chat_history) # Function for generating LLM response def generate_response(prompt_input, email, passwd): # Hugging Face Login sign = Login(email, passwd) cookies = sign.login() # Create ChatBot chatbot = hugchat.ChatBot(cookies=cookies.get_dict()) for dict_message in st.session_state.messages: string_dialogue = "You are a helpful assistant." if dict_message["role"] == "user": string_dialogue += "User: " + dict_message["content"] + "\n\n" else: string_dialogue += "Assistant: " + dict_message["content"] + "\n\n" prompt = f"{string_dialogue} {prompt_input} Assistant: " return chatbot.chat(prompt) # User-provided prompt if prompt := st.chat_input(disabled=not (hf_email and hf_pass)): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Generate a new response if last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = generate_response(prompt, hf_email, hf_pass) st.write(response) message = {"role": "assistant", "content": response} st.session_state.messages.append(message)