Spaces:
Running
Running
Upscale Update
Browse filesAdded Upscaling.
- app.py +138 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import random
|
5 |
+
|
6 |
+
def apply_cartoon_filter(frame):
|
7 |
+
"""Cartoon Filter"""
|
8 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
9 |
+
gray = cv2.medianBlur(gray, 5)
|
10 |
+
edges = cv2.adaptiveThreshold(gray, 255,
|
11 |
+
cv2.ADAPTIVE_THRESH_MEAN_C,
|
12 |
+
cv2.THRESH_BINARY, 11, 7)
|
13 |
+
color = cv2.bilateralFilter(frame, 9, 300, 300)
|
14 |
+
cartoon = cv2.bitwise_and(color, color, mask=edges)
|
15 |
+
return cartoon
|
16 |
+
|
17 |
+
def apply_neon_effect(frame):
|
18 |
+
"""Neon Light Filter"""
|
19 |
+
# Intensify colors
|
20 |
+
frame_neon = frame.copy().astype(np.float32)
|
21 |
+
frame_neon = np.clip(frame_neon * 1.5, 0, 255).astype(np.uint8)
|
22 |
+
|
23 |
+
# Highlight edges
|
24 |
+
edges = cv2.Canny(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), 100, 200)
|
25 |
+
edges_colored = cv2.applyColorMap(edges, cv2.COLORMAP_JET)
|
26 |
+
|
27 |
+
# Blend
|
28 |
+
result = cv2.addWeighted(frame_neon, 0.7, edges_colored, 0.3, 0)
|
29 |
+
return result
|
30 |
+
|
31 |
+
def apply_pixelate_effect(frame, pixel_size=15):
|
32 |
+
"""Pixelate Effect"""
|
33 |
+
h, w = frame.shape[:2]
|
34 |
+
small = cv2.resize(frame, (w//pixel_size, h//pixel_size), interpolation=cv2.INTER_LINEAR)
|
35 |
+
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
|
36 |
+
|
37 |
+
def apply_glitch_effect(frame):
|
38 |
+
"""Glitch Filter"""
|
39 |
+
glitched = frame.copy()
|
40 |
+
|
41 |
+
# Randomly shift color channels
|
42 |
+
glitched[:, :, 0] = np.roll(glitched[:, :, 0], random.randint(-50, 50), axis=0)
|
43 |
+
glitched[:, :, 1] = np.roll(glitched[:, :, 1], random.randint(-50, 50), axis=1)
|
44 |
+
|
45 |
+
# Add noise to random areas
|
46 |
+
noise = np.random.randint(0, 255, frame.shape, dtype=np.uint8)
|
47 |
+
glitched = cv2.addWeighted(glitched, 0.7, noise, 0.3, 0)
|
48 |
+
|
49 |
+
return glitched
|
50 |
+
|
51 |
+
def apply_watercolor_effect(frame):
|
52 |
+
"""Watercolor Effect"""
|
53 |
+
# Smooth using bilateral filtering
|
54 |
+
frame_soft = cv2.bilateralFilter(frame, 9, 75, 75)
|
55 |
+
|
56 |
+
# Highlight edges
|
57 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
58 |
+
edges = cv2.Canny(gray, 100, 200)
|
59 |
+
edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
|
60 |
+
|
61 |
+
# Blend
|
62 |
+
result = cv2.addWeighted(frame_soft, 0.8, edges, 0.2, 0)
|
63 |
+
return result
|
64 |
+
|
65 |
+
def apply_upscale(frame, scale_factor=1.5):
|
66 |
+
"""
|
67 |
+
Upscaling Effect
|
68 |
+
|
69 |
+
Args:
|
70 |
+
frame (numpy.ndarray): Input Image
|
71 |
+
scale_factor (float): Scaling Factor (default 1.5)
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
numpy.ndarray: Upscaled Image
|
75 |
+
"""
|
76 |
+
interpolation_methods = [
|
77 |
+
cv2.INTER_CUBIC,
|
78 |
+
cv2.INTER_LANCZOS4
|
79 |
+
]
|
80 |
+
|
81 |
+
method = random.choice(interpolation_methods)
|
82 |
+
|
83 |
+
height, width = frame.shape[:2]
|
84 |
+
new_height = int(height * scale_factor)
|
85 |
+
new_width = int(width * scale_factor)
|
86 |
+
|
87 |
+
upscaled = cv2.resize(frame, (new_width, new_height), interpolation=method)
|
88 |
+
|
89 |
+
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
90 |
+
sharpened = cv2.filter2D(upscaled, -1, kernel)
|
91 |
+
|
92 |
+
return sharpened
|
93 |
+
|
94 |
+
def apply_filter(filter_type, input_image=None):
|
95 |
+
if input_image is None:
|
96 |
+
cap = cv2.VideoCapture(0)
|
97 |
+
ret, frame = cap.read()
|
98 |
+
cap.release()
|
99 |
+
if not ret:
|
100 |
+
return "Failed to capture image from webcam"
|
101 |
+
else:
|
102 |
+
frame = input_image
|
103 |
+
|
104 |
+
if filter_type == "Upscale":
|
105 |
+
return apply_upscale(frame)
|
106 |
+
elif filter_type == "Cartoon":
|
107 |
+
return apply_cartoon_filter(frame)
|
108 |
+
elif filter_type == "Neon Light":
|
109 |
+
return apply_neon_effect(frame)
|
110 |
+
elif filter_type == "Pixelate":
|
111 |
+
return apply_pixelate_effect(frame)
|
112 |
+
elif filter_type == "Glitch":
|
113 |
+
return apply_glitch_effect(frame)
|
114 |
+
elif filter_type == "Watercolor":
|
115 |
+
return apply_watercolor_effect(frame)
|
116 |
+
|
117 |
+
# Gradio interface
|
118 |
+
with gr.Blocks() as demo:
|
119 |
+
gr.Markdown('# <p align="center"> OpenCV Image Effects </p>')
|
120 |
+
|
121 |
+
# Filter options
|
122 |
+
filter_type = gr.Dropdown(
|
123 |
+
label="Select Filter",
|
124 |
+
choices=["Upscale","Cartoon", "Neon Light", "Pixelate", "Glitch", "Watercolor"],
|
125 |
+
value="Upscale"
|
126 |
+
)
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
input_image = gr.Image(label="Upload Image", type="numpy")
|
130 |
+
output_image = gr.Image(label="Filtered Image")
|
131 |
+
|
132 |
+
# Apply filter button
|
133 |
+
apply_button = gr.Button("Apply Filter")
|
134 |
+
|
135 |
+
# Apply filter function on button click
|
136 |
+
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
|
137 |
+
|
138 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
numpy
|