import cv2 import numpy as np import gradio as gr import random def apply_cartoon_filter(frame): """Cartoon Filter""" gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.medianBlur(gray, 5) edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 7) color = cv2.bilateralFilter(frame, 9, 300, 300) cartoon = cv2.bitwise_and(color, color, mask=edges) return cartoon def apply_neon_effect(frame): """Neon Light Filter""" # Intensify colors frame_neon = frame.copy().astype(np.float32) frame_neon = np.clip(frame_neon * 1.5, 0, 255).astype(np.uint8) # Highlight edges edges = cv2.Canny(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), 100, 200) edges_colored = cv2.applyColorMap(edges, cv2.COLORMAP_JET) # Blend result = cv2.addWeighted(frame_neon, 0.7, edges_colored, 0.3, 0) return result def apply_pixelate_effect(frame, pixel_size=15): """Pixelate Effect""" h, w = frame.shape[:2] small = cv2.resize(frame, (w//pixel_size, h//pixel_size), interpolation=cv2.INTER_LINEAR) return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST) def apply_glitch_effect(frame): """Glitch Filter""" glitched = frame.copy() # Randomly shift color channels glitched[:, :, 0] = np.roll(glitched[:, :, 0], random.randint(-50, 50), axis=0) glitched[:, :, 1] = np.roll(glitched[:, :, 1], random.randint(-50, 50), axis=1) # Add noise to random areas noise = np.random.randint(0, 255, frame.shape, dtype=np.uint8) glitched = cv2.addWeighted(glitched, 0.7, noise, 0.3, 0) return glitched def apply_watercolor_effect(frame): """Watercolor Effect""" # Smooth using bilateral filtering frame_soft = cv2.bilateralFilter(frame, 9, 75, 75) # Highlight edges gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 100, 200) edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) # Blend result = cv2.addWeighted(frame_soft, 0.8, edges, 0.2, 0) return result def apply_upscale(frame, scale_factor=1.5): """ Upscaling Effect Args: frame (numpy.ndarray): Input Image scale_factor (float): Scaling Factor (default 1.5) Returns: numpy.ndarray: Upscaled Image """ interpolation_methods = [ cv2.INTER_CUBIC, cv2.INTER_LANCZOS4 ] method = random.choice(interpolation_methods) height, width = frame.shape[:2] new_height = int(height * scale_factor) new_width = int(width * scale_factor) upscaled = cv2.resize(frame, (new_width, new_height), interpolation=method) kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) sharpened = cv2.filter2D(upscaled, -1, kernel) return sharpened def apply_filter(filter_type, input_image=None): if input_image is None: cap = cv2.VideoCapture(0) ret, frame = cap.read() cap.release() if not ret: return "Failed to capture image from webcam" else: frame = input_image if filter_type == "Upscale": return apply_upscale(frame) elif filter_type == "Cartoon": return apply_cartoon_filter(frame) elif filter_type == "Neon Light": return apply_neon_effect(frame) elif filter_type == "Pixelate": return apply_pixelate_effect(frame) elif filter_type == "Glitch": return apply_glitch_effect(frame) elif filter_type == "Watercolor": return apply_watercolor_effect(frame) # Gradio interface with gr.Blocks() as demo: gr.Markdown('#

OpenCV Image Effects

') # Filter options filter_type = gr.Dropdown( label="Select Filter", choices=["Upscale","Cartoon", "Neon Light", "Pixelate", "Glitch", "Watercolor"], value="Upscale" ) with gr.Row(): input_image = gr.Image(label="Upload Image", type="numpy") output_image = gr.Image(label="Filtered Image") # Apply filter button apply_button = gr.Button("Apply Filter") # Apply filter function on button click apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image) demo.launch()