import streamlit as st import torch from transformers import pipeline st.set_page_config(page_title="Vietnamese Legal Question Answering", page_icon="🧊", layout="centered", initial_sidebar_state="collapsed") @st.cache_data def load_model(model_path): device = 0 if torch.cuda.is_available() else -1 question_answerer = pipeline("question-answering", model=model_path, device=device) return question_answerer def get_answer(model, context, question): return model(context=context, question=question, max_answer_len=512) if 'model' not in st.session_state: st.session_state.model = load_model(model_path='./models/vi-mrc-large/model') st.markdown("

Vietnamese Legal Question Answering

", unsafe_allow_html=True) context = st.text_area(label='Vietnamese Legal Documents/context:', placeholder='Enter your Vietnamese legal document here...', height=300) question = st.text_area(label='Question about this Vietnamese Legal Documents:', placeholder='Enter your question about this Vietnamese Legal Documents here...', height=100) btn_answer = st.button(label='Answer') if btn_answer: answer = get_answer(model=st.session_state.model, context=context, question=question) st.success(f"{answer['answer']}")