Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import sqlite3 | |
import matplotlib.pyplot as plt | |
from dataBaseSetup import create_connection | |
# Funciones de conexi贸n a la base de datos | |
def create_connection(): | |
conn = sqlite3.connect('bike_store.db') | |
return conn | |
# Funciones de consulta | |
def get_stocks_by_category_store(category_name, store_name): | |
conn = create_connection() | |
sql = ''' | |
SELECT categories.category_name, stores.store_name, SUM(stocks.quantity) as total_stock | |
FROM stocks | |
JOIN products ON stocks.product_id = products.product_id | |
JOIN categories ON products.category_id = categories.category_id | |
JOIN stores ON stocks.store_id = stores.store_id | |
WHERE categories.category_name = ? AND stores.store_name = ? | |
GROUP BY categories.category_name, stores.store_name; | |
''' | |
df = pd.read_sql_query(sql, conn, params=(category_name, store_name)) | |
conn.close() | |
return df | |
def get_order_items_by_category_store(category_name, store_name): | |
conn = create_connection() | |
sql = ''' | |
SELECT c.category_name, s.store_name, COUNT(oi.item_id) as total_items | |
FROM order_items oi | |
JOIN orders o ON oi.order_id = o.order_id | |
JOIN products p ON oi.product_id = p.product_id | |
JOIN categories c ON p.category_id = c.category_id | |
JOIN stores s ON o.store_id = s.store_id | |
WHERE c.category_name = ? AND s.store_name = ? | |
GROUP BY c.category_name, s.store_name; | |
''' | |
df = pd.read_sql_query(sql, conn, params=(category_name, store_name)) | |
conn.close() | |
return df | |
def get_total_sales_by_store_year_month(store_name, year_month): | |
conn = create_connection() | |
sql = ''' | |
SELECT strftime('%Y-%m', o.order_date) as year_month, SUM(oi.quantity * oi.list_price) as total_sales | |
FROM orders o | |
JOIN order_items oi ON o.order_id = oi.order_id | |
WHERE strftime('%Y-%m', o.order_date) = ? AND o.store_id IN ( | |
SELECT store_id FROM stores WHERE store_name = ? | |
) | |
GROUP BY year_month; | |
''' | |
df = pd.read_sql_query(sql, conn, params=(year_month, store_name)) | |
conn.close() | |
return df | |
def get_staff_order_counts(desc=True): | |
conn = create_connection() | |
sql = ''' | |
SELECT s.staff_id, s.first_name || ' ' || s.last_name AS staff_name, COUNT(o.order_id) as order_count | |
FROM orders o | |
JOIN staffs s ON o.staff_id = s.staff_id | |
GROUP BY s.staff_id | |
ORDER BY order_count {} | |
LIMIT 1; | |
'''.format('DESC' if desc else 'ASC') | |
df = pd.read_sql_query(sql, conn) | |
conn.close() | |
return df | |
# STREAMLIT | |
def app(): | |
st.title("Bike Store Management System") | |
# Opciones de consulta en la barra lateral | |
query_options = [ | |
"Query 1: Get Stocks", | |
"Query 2: Get Order Items", | |
"Query 3: Total Sales in Santa Cruz Bikes", | |
"Query 4: Total Sales in Baldwin Bikes", | |
"Query 5: Total Sales in Rowlett Bikes", | |
"Query 6: Staff with the Highest Number of Orders", | |
"Query 7: Staff with the Lowest Number of Orders" | |
] | |
selected_query = st.sidebar.radio("Seleccione una consulta para ejecutar", query_options) | |
# Mostrar inputs y ejecutar la consulta basada en la selecci贸n | |
if selected_query == "Query 1: Get Stocks": | |
st.write("### Query 1: Stocks by Category and Store") | |
category_name_1 = st.text_input("Category Name for Stocks", key='1') | |
store_name_1 = st.text_input("Store Name for Stocks", key='2') | |
if st.button("Execute Query 1", key='3'): | |
df = get_stocks_by_category_store(category_name_1, store_name_1) | |
st.write(df) | |
if not df.empty: | |
fig, ax = plt.subplots() | |
df.plot(kind='barh', x='category_name', y='total_stock', ax=ax) | |
st.pyplot(fig) | |
elif selected_query == "Query 2: Get Order Items": | |
st.write("### Query 2: Order Items by Category and Store") | |
category_name_2 = st.text_input("Category Name for Order Items", key='4') | |
store_name_2 = st.text_input("Store Name for Order Items", key='5') | |
if st.button("Execute Query 2", key='6'): | |
df = get_order_items_by_category_store(category_name_2, store_name_2) | |
st.write(df) | |
if not df.empty: | |
fig, ax = plt.subplots() | |
df.plot(kind='bah', x='category_name', y='total_items', ax=ax) | |
st.pyplot(fig) | |
elif selected_query == "Query 3: Total Sales in Santa Cruz Bikes": | |
st.write("### Query 3: Total Sales in Santa Cruz Bikes") | |
year_month_3 = st.text_input("Year-Month (YYYY-MM) for Santa Cruz Bikes", key='7') | |
if st.button("Execute Query 3", key='8'): | |
df = get_total_sales_by_store_year_month("Santa Cruz Bikes", year_month_3) | |
st.write(df) | |
if not df.empty: | |
fig, ax = plt.subplots() | |
df.plot(kind='barh', x='year_month', y='total_sales', ax=ax) | |
st.pyplot(fig) | |
elif selected_query == "Query 4: Total Sales in Baldwin Bikes": | |
st.write("### Query 4: Total Sales in Baldwin Bikes") | |
year_month_4 = st.text_input("Year-Month (YYYY-MM) for Baldwin Bikes", key='9') | |
if st.button("Execute Query 4", key='10'): | |
df = get_total_sales_by_store_year_month("Baldwin Bikes", year_month_4) | |
st.write(df) | |
if not df.empty: | |
fig, ax = plt.subplots() | |
df.plot(kind='barh', x='year_month', y='total_sales', ax=ax) | |
st.pyplot(fig) | |
elif selected_query == "Query 5: Total Sales in Rowlett Bikes": | |
st.write("### Query 5: Total Sales in Rowlett Bikes") | |
year_month_5 = st.text_input("Year-Month (YYYY-MM) for Rowlett Bikes", key='11') | |
if st.button("Execute Query 5", key='12'): | |
df = get_total_sales_by_store_year_month("Rowlett Bikes", year_month_5) | |
st.write(df) | |
if not df.empty: | |
fig, ax = plt.subplots() | |
df.plot(kind='barh', x='year_month', y='total_sales', ax=ax) | |
st.pyplot(fig) | |
elif selected_query == "Query 6: Staff with the Highest Number of Orders": | |
st.write("### Query 6: Staff with the Highest Number of Orders") | |
if st.button("Execute Query 6", key='13'): | |
df = get_staff_order_counts(desc=True) | |
st.write(df) | |
if not df.empty: | |
fig, ax = plt.subplots() | |
df.plot(kind='barh', x='staff_name', y='order_count', ax=ax) | |
st.pyplot(fig) | |
elif selected_query == "Query 7: Staff with the Lowest Number of Orders": | |
st.write("### Query 7: Staff with the Lowest Number of Orders") | |
if st.button("Execute Query 7", key='14'): | |
df = get_staff_order_counts(desc=False) | |
st.write(df) | |
if not df.empty: | |
fig, ax = plt.subplots() | |
df.plot(kind='barh', x='staff_name', y='order_count', ax=ax) | |
st.pyplot(fig) | |
if __name__ == "__main__": | |
app() | |