Spaces:
Sleeping
Sleeping
gradio demo working fine
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- 07_effnetb0_data_20_percent_10_epochs.pth +3 -0
- app.py +53 -0
- examples/2582289.jpg +0 -0
- examples/3622237.jpg +0 -0
- examples/592799.jpg +0 -0
- model.py +22 -0
- playground.py +4 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
07_effnetb0_data_20_percent_10_epochs.pth filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
07_effnetb0_data_20_percent_10_epochs.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b1d222b609c6e0928d890cc4a17d429727e9623503d5a478b6cf6f50cba69f2
|
3 |
+
size 16354890
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from model import create_effnetb0_model
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
from typing import Tuple, Dict
|
8 |
+
|
9 |
+
|
10 |
+
class_names = ["pizza", "steak", "sushi"]
|
11 |
+
|
12 |
+
effnetb0, effnetb0_transforms = create_effnetb0_model()
|
13 |
+
|
14 |
+
effnetb0.load_state_dict(torch.load(
|
15 |
+
"07_effnetb0_data_20_percent_10_epochs.pth"))
|
16 |
+
|
17 |
+
|
18 |
+
def predict(img) -> Tuple[Dict, float]:
|
19 |
+
pred_list = []
|
20 |
+
|
21 |
+
pred_dict = {}
|
22 |
+
|
23 |
+
start_time = timer()
|
24 |
+
|
25 |
+
img = effnetb0_transforms(img).unsqueeze(0)
|
26 |
+
|
27 |
+
effnetb0.eval()
|
28 |
+
|
29 |
+
with torch.inference_mode():
|
30 |
+
pred_probs = torch.softmax(effnetb0(img), dim=1)
|
31 |
+
|
32 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
33 |
+
pred_labels_and_probs = {class_names[i]: float(
|
34 |
+
pred_probs[0][i]) for i in range(len(class_names))}
|
35 |
+
|
36 |
+
pred_time = round(timer() - start_time, 4)
|
37 |
+
|
38 |
+
pred_list.append(pred_dict)
|
39 |
+
|
40 |
+
return pred_labels_and_probs, pred_time
|
41 |
+
|
42 |
+
|
43 |
+
title = "FoodVision Mini 🍕🥩🍣"
|
44 |
+
description = "An EfficientNetB0 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
45 |
+
article = "Full Source code from scratch [deployment.ipynb](https://github.com/Victoran0/food-vision.git)."
|
46 |
+
|
47 |
+
# Create examples list from "examples/" directory
|
48 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
49 |
+
|
50 |
+
demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=3, label='Predictions'), gr.Number(
|
51 |
+
label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article)
|
52 |
+
|
53 |
+
demo.launch()
|
examples/2582289.jpg
ADDED
examples/3622237.jpg
ADDED
examples/592799.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
def create_effnetb0_model(num_classes: int=3, seed: int=42):
|
7 |
+
effnetb0_weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT
|
8 |
+
effnetb0_transforms = effnetb0_weights.transforms()
|
9 |
+
effnetb0 = torchvision.models.efficientnet_b0(weights=effnetb0_weights)
|
10 |
+
|
11 |
+
for param in effnetb0.parameters():
|
12 |
+
param.required_grad = False
|
13 |
+
|
14 |
+
torch.manual_seed(seed)
|
15 |
+
|
16 |
+
effnetb0.classifier = nn.Sequential(
|
17 |
+
nn.Dropout(p=0.3, inplace=True),
|
18 |
+
nn.Linear(in_features=1280, out_features=num_classes)
|
19 |
+
)
|
20 |
+
|
21 |
+
return effnetb0, effnetb0_transforms
|
22 |
+
|
playground.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
print(os.listdir("C:/Users/User/Data Science/Deep Learning/Pytorch/food-vision/data/pizza_steak_sushi_20_percent"))
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.4.1
|
2 |
+
torchvision==0.19.1
|
3 |
+
gradio==4.44.0
|