Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import numpy as np | |
from onnx_inference import emotions_detector | |
class_names = ['angry', 'happy', 'sad'] | |
def predict(img): | |
img = np.array(img) | |
onnx_pred, time_taken = emotions_detector(img) | |
pred_labels_and_probs = {class_names[i]: float( | |
onnx_pred[0][0][i]) for i in range(len(class_names))} | |
return pred_labels_and_probs, time_taken | |
title = "Human Emotion Detection ðŸ˜ðŸ¤£ðŸ¥¹" | |
description = "An EfficientNet ONNX quantized feature extractor computer vision model to classify images and detect the emotion of the person in it.(Uploaded image should be of a single person)" | |
article = "Full Source code from scratch can be found in the huggingface Space: https://huggingface.co/spaces/Victorano/human_emotion_detection" | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=3, label='Predictions'), gr.Number( | |
label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) | |
demo.launch() | |