Spaces:
Sleeping
Sleeping
All functionalities working fine
Browse files- app.py +29 -0
- detect.py +10 -0
- eff_quantized.onnx +3 -0
- examples/test.jpg +0 -0
- onnx_inference.py +27 -0
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from onnx_inference import emotions_detector
|
5 |
+
|
6 |
+
class_names = ['angry', 'happy', 'sad']
|
7 |
+
|
8 |
+
|
9 |
+
def predict(img):
|
10 |
+
img = np.array(img)
|
11 |
+
onnx_pred, time_taken = emotions_detector(img)
|
12 |
+
|
13 |
+
pred_labels_and_probs = {class_names[i]: float(
|
14 |
+
onnx_pred[0][0][i]) for i in range(len(class_names))}
|
15 |
+
|
16 |
+
return pred_labels_and_probs, time_taken
|
17 |
+
|
18 |
+
|
19 |
+
title = "Human Emotion Detection 😭🤣🥹"
|
20 |
+
description = "An EfficientNet ONNX quantized feature extractor computer vision model to classify images and detect the emotion of the person in it.(Uploaded image should be of a single person)"
|
21 |
+
article = "Full Source code from scratch can be found in the huggingface Space...."
|
22 |
+
|
23 |
+
# Create examples list from "examples/" directory
|
24 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
25 |
+
|
26 |
+
demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=3, label='Predictions'), gr.Number(
|
27 |
+
label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article)
|
28 |
+
|
29 |
+
demo.launch()
|
detect.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def emo_router(im):
|
7 |
+
print(f"the Image: {im}")
|
8 |
+
image = np.array(im)
|
9 |
+
|
10 |
+
return image
|
eff_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c278206e78d48fc8ab5151bc22e2636faad7bb41323ac5f0b6bde72079ebf72
|
3 |
+
size 63147650
|
examples/test.jpg
ADDED
![]() |
onnx_inference.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import onnxruntime as rt
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import time
|
5 |
+
|
6 |
+
providers = ['CPUExecutionProvider']
|
7 |
+
m_q = rt.InferenceSession(
|
8 |
+
"eff_quantized.onnx", providers=providers)
|
9 |
+
|
10 |
+
|
11 |
+
def emotions_detector(img_array):
|
12 |
+
time_init = time.time()
|
13 |
+
|
14 |
+
# Check if image is in grayscale and convert to rgb
|
15 |
+
if len(img_array.shape) == 2:
|
16 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
|
17 |
+
|
18 |
+
# resize layer
|
19 |
+
test_image = cv2.resize(img_array, (256, 256))
|
20 |
+
im = np.float32(test_image)
|
21 |
+
img_array = np.expand_dims(im, axis=0)
|
22 |
+
|
23 |
+
onnx_pred = m_q.run(['dense_2'], {"input_1": img_array})
|
24 |
+
|
25 |
+
time_elapsed = time.time() - time_init
|
26 |
+
|
27 |
+
return onnx_pred, time_elapsed
|