Spaces:
Runtime error
Runtime error
import pandas as pd | |
import joblib | |
from huggingface_hub import HfApi | |
import pickle | |
import yfinance as yf | |
import keras | |
from datetime import datetime, timedelta | |
from forex_python.converter import get_rate | |
import pandas as pd | |
import numpy as np | |
import cpi | |
from sklearn.preprocessing import MinMaxScaler | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
from huggingface_hub import notebook_login | |
notebook_login() | |
import hopsworks | |
from datetime import date | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
st.write(""" | |
# Stock Price Prediction | |
Shown is the stock prediction of the next working day taking into account the last 10 working days | |
""") | |
model = keras.models.load_model('model_stock_prices.h5') | |
working_days = st.sidebar.slider("Show the historical data of the following last working days", min_value = 10, max_value=20) | |
working_days = int(working_days) | |
# downloading the last 10 days to make the prediction | |
today = date.today() | |
days_ago = today - timedelta(days=20) | |
# we get the last 20 days and keep just the last 10 working days, which have prices | |
nasdaq = yf.Ticker("^IXIC") | |
hist = nasdaq.history(start=days_ago, end=today) | |
hist = hist.drop(columns=['Dividends', 'Stock Splits']) | |
# keeping the last 10 data points | |
hist = hist[-10:] | |
inflation = [] | |
for t in hist.index: | |
inflation.append(get_rate("USD", "EUR", t)) | |
cpi_items_df = cpi.series.get(seasonally_adjusted=False).to_dataframe() | |
cpi_items_df = cpi_items_df[cpi_items_df['period_type']=='monthly'] | |
cpi_items_df['date'] = pd.to_datetime(cpi_items_df['date']) | |
cpi_items_df = cpi_items_df.set_index('date') | |
cpi_df = cpi_items_df['value'].loc['2022':'2023'] | |
cpi_col = [] | |
for x in hist.index: | |
# ts = datetime(x.year, x.month, 1) | |
# just adding the latest inflation rate | |
cpi_col.append(cpi_df[-1]) | |
hist['Inflation'] = inflation | |
hist['CPI'] = cpi_col | |
hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0) | |
s = hf_hub_download(repo_id="marvmk/scalable_project", filename="scaler.save", repo_type='dataset') | |
scaler = joblib.load(s) | |
inp = scaler.transform(hist.to_numpy()) | |
df = inp | |
temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end']) | |
ds = [] | |
ds.append(temp_df[0:10]) | |
ds = np.array(ds) | |
predictions = model.predict(ds) | |
p = predictions[0][0][0] | |
p = float(p) | |
a = np.array([0,0,0,p,0,0,0,0]) | |
a = scaler.inverse_transform(a.reshape(1,-1)) | |
final_prediction = a[-1][3] | |
prediction = [] | |
#prediction.append(final_prediction) | |
close = hist['Close'].to_list() | |
print(close) | |
for c in close: | |
prediction.append(c) | |
prediction.append(final_prediction) | |
print(prediction) | |
plt.figure(figsize = (20,10)) | |
plt.plot(prediction, label="Prediction") | |
plt.plot(hist['Close'].to_list()[-10:], label="Previous") | |
plt.ylabel('Price US$', fontsize = 15 ) | |
plt.xlabel('Working Days', fontsize = 15 ) | |
plt.title("NASDAQ Stock Prediction", fontsize = 20) | |
plt.legend() | |
plt.grid() | |
st.pyplot(plt) | |
st.write(""" | |
# Historical prices data | |
Shown is the historical data of the prices (can be adapted with the values from the sidebar) | |
""") | |
today = date.today() | |
days_ago = today - timedelta(days=25) | |
# we get the last 30 days and keep just the last working days, which have prices | |
nasdaq = yf.Ticker("^IXIC") | |
hist = nasdaq.history(start=days_ago, end=today) | |
hist = hist.drop(columns=['Dividends', 'Stock Splits']) | |
# keeping the last working days data points | |
hist = hist[-working_days:] | |
inflation = [] | |
for t in hist.index: | |
inflation.append(get_rate("USD", "EUR", t)) | |
cpi_items_df = cpi.series.get(seasonally_adjusted=False).to_dataframe() | |
cpi_items_df = cpi_items_df[cpi_items_df['period_type']=='monthly'] | |
cpi_items_df['date'] = pd.to_datetime(cpi_items_df['date']) | |
cpi_items_df = cpi_items_df.set_index('date') | |
cpi_df = cpi_items_df['value'].loc['2022':'2023'] | |
cpi_col = [] | |
for x in hist.index: | |
# ts = datetime(x.year, x.month, 1) | |
# just adding the latest inflation rate | |
cpi_col.append(cpi_df[-1]) | |
hist['Inflation'] = inflation | |
hist['CPI'] = cpi_col | |
hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0) | |
hist | |