Spaces:
Build error
Build error
VideoAditor
commited on
Commit
•
3ff0cf3
1
Parent(s):
de59d95
Upload app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,1119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
4 |
+
os.environ['GRADIO_ANALYTICS_ENABLED'] = '0'
|
5 |
+
sys.path.insert(0, os.getcwd())
|
6 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), 'sd-scripts'))
|
7 |
+
import subprocess
|
8 |
import gradio as gr
|
9 |
+
from PIL import Image
|
10 |
+
import torch
|
11 |
+
import uuid
|
12 |
+
import shutil
|
13 |
+
import json
|
14 |
+
import yaml
|
15 |
+
from slugify import slugify
|
16 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
17 |
+
from gradio_logsview import LogsView, LogsViewRunner
|
18 |
+
from huggingface_hub import hf_hub_download, HfApi
|
19 |
+
from library import flux_train_utils, huggingface_util
|
20 |
+
from argparse import Namespace
|
21 |
+
import train_network
|
22 |
+
import toml
|
23 |
+
import re
|
24 |
+
MAX_IMAGES = 150
|
25 |
|
26 |
+
with open('models.yaml', 'r') as file:
|
27 |
+
models = yaml.safe_load(file)
|
28 |
|
29 |
+
def readme(base_model, lora_name, instance_prompt, sample_prompts):
|
30 |
+
|
31 |
+
# model license
|
32 |
+
model_config = models[base_model]
|
33 |
+
model_file = model_config["file"]
|
34 |
+
base_model_name = model_config["base"]
|
35 |
+
license = None
|
36 |
+
license_name = None
|
37 |
+
license_link = None
|
38 |
+
license_items = []
|
39 |
+
if "license" in model_config:
|
40 |
+
license = model_config["license"]
|
41 |
+
license_items.append(f"license: {license}")
|
42 |
+
if "license_name" in model_config:
|
43 |
+
license_name = model_config["license_name"]
|
44 |
+
license_items.append(f"license_name: {license_name}")
|
45 |
+
if "license_link" in model_config:
|
46 |
+
license_link = model_config["license_link"]
|
47 |
+
license_items.append(f"license_link: {license_link}")
|
48 |
+
license_str = "\n".join(license_items)
|
49 |
+
print(f"license_items={license_items}")
|
50 |
+
print(f"license_str = {license_str}")
|
51 |
+
|
52 |
+
# tags
|
53 |
+
tags = [ "text-to-image", "flux", "lora", "diffusers", "template:sd-lora", "fluxgym" ]
|
54 |
+
|
55 |
+
# widgets
|
56 |
+
widgets = []
|
57 |
+
sample_image_paths = []
|
58 |
+
output_name = slugify(lora_name)
|
59 |
+
samples_dir = resolve_path_without_quotes(f"outputs/{output_name}/sample")
|
60 |
+
try:
|
61 |
+
for filename in os.listdir(samples_dir):
|
62 |
+
# Filename Schema: [name]_[steps]_[index]_[timestamp].png
|
63 |
+
match = re.search(r"_(\d+)_(\d+)_(\d+)\.png$", filename)
|
64 |
+
if match:
|
65 |
+
steps, index, timestamp = int(match.group(1)), int(match.group(2)), int(match.group(3))
|
66 |
+
sample_image_paths.append((steps, index, f"sample/{filename}"))
|
67 |
+
|
68 |
+
# Sort by numeric index
|
69 |
+
sample_image_paths.sort(key=lambda x: x[0], reverse=True)
|
70 |
+
|
71 |
+
final_sample_image_paths = sample_image_paths[:len(sample_prompts)]
|
72 |
+
final_sample_image_paths.sort(key=lambda x: x[1])
|
73 |
+
for i, prompt in enumerate(sample_prompts):
|
74 |
+
_, _, image_path = final_sample_image_paths[i]
|
75 |
+
widgets.append(
|
76 |
+
{
|
77 |
+
"text": prompt,
|
78 |
+
"output": {
|
79 |
+
"url": image_path
|
80 |
+
},
|
81 |
+
}
|
82 |
+
)
|
83 |
+
except:
|
84 |
+
print(f"no samples")
|
85 |
+
dtype = "torch.bfloat16"
|
86 |
+
# Construct the README content
|
87 |
+
readme_content = f"""---
|
88 |
+
tags:
|
89 |
+
{yaml.dump(tags, indent=4).strip()}
|
90 |
+
{"widget:" if os.path.isdir(samples_dir) else ""}
|
91 |
+
{yaml.dump(widgets, indent=4).strip() if widgets else ""}
|
92 |
+
base_model: {base_model_name}
|
93 |
+
{"instance_prompt: " + instance_prompt if instance_prompt else ""}
|
94 |
+
{license_str}
|
95 |
+
---
|
96 |
+
|
97 |
+
# {lora_name}
|
98 |
+
|
99 |
+
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
|
100 |
+
|
101 |
+
<Gallery />
|
102 |
+
|
103 |
+
## Trigger words
|
104 |
+
|
105 |
+
{"You should use `" + instance_prompt + "` to trigger the image generation." if instance_prompt else "No trigger words defined."}
|
106 |
+
|
107 |
+
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
|
108 |
+
|
109 |
+
Weights for this model are available in Safetensors format.
|
110 |
+
|
111 |
+
"""
|
112 |
+
return readme_content
|
113 |
+
|
114 |
+
def account_hf():
|
115 |
+
try:
|
116 |
+
with open("HF_TOKEN", "r") as file:
|
117 |
+
token = file.read()
|
118 |
+
api = HfApi(token=token)
|
119 |
+
try:
|
120 |
+
account = api.whoami()
|
121 |
+
return { "token": token, "account": account['name'] }
|
122 |
+
except:
|
123 |
+
return None
|
124 |
+
except:
|
125 |
+
return None
|
126 |
+
|
127 |
+
"""
|
128 |
+
hf_logout.click(fn=logout_hf, outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
129 |
+
"""
|
130 |
+
def logout_hf():
|
131 |
+
os.remove("HF_TOKEN")
|
132 |
+
global current_account
|
133 |
+
current_account = account_hf()
|
134 |
+
print(f"current_account={current_account}")
|
135 |
+
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
|
136 |
+
|
137 |
+
|
138 |
+
"""
|
139 |
+
hf_login.click(fn=login_hf, inputs=[hf_token], outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
140 |
+
"""
|
141 |
+
def login_hf(hf_token):
|
142 |
+
api = HfApi(token=hf_token)
|
143 |
+
try:
|
144 |
+
account = api.whoami()
|
145 |
+
if account != None:
|
146 |
+
if "name" in account:
|
147 |
+
with open("HF_TOKEN", "w") as file:
|
148 |
+
file.write(hf_token)
|
149 |
+
global current_account
|
150 |
+
current_account = account_hf()
|
151 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
|
152 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
153 |
+
except:
|
154 |
+
print(f"incorrect hf_token")
|
155 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
156 |
+
|
157 |
+
def upload_hf(base_model, lora_rows, repo_owner, repo_name, repo_visibility, hf_token):
|
158 |
+
src = lora_rows
|
159 |
+
repo_id = f"{repo_owner}/{repo_name}"
|
160 |
+
gr.Info(f"Uploading to Huggingface. Please Stand by...", duration=None)
|
161 |
+
args = Namespace(
|
162 |
+
huggingface_repo_id=repo_id,
|
163 |
+
huggingface_repo_type="model",
|
164 |
+
huggingface_repo_visibility=repo_visibility,
|
165 |
+
huggingface_path_in_repo="",
|
166 |
+
huggingface_token=hf_token,
|
167 |
+
async_upload=False
|
168 |
+
)
|
169 |
+
print(f"upload_hf args={args}")
|
170 |
+
huggingface_util.upload(args=args, src=src)
|
171 |
+
gr.Info(f"[Upload Complete] https://huggingface.co/{repo_id}", duration=None)
|
172 |
+
|
173 |
+
def load_captioning(uploaded_files, concept_sentence):
|
174 |
+
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
|
175 |
+
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
|
176 |
+
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
|
177 |
+
updates = []
|
178 |
+
if len(uploaded_images) <= 1:
|
179 |
+
raise gr.Error(
|
180 |
+
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
|
181 |
+
)
|
182 |
+
elif len(uploaded_images) > MAX_IMAGES:
|
183 |
+
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
|
184 |
+
# Update for the captioning_area
|
185 |
+
# for _ in range(3):
|
186 |
+
updates.append(gr.update(visible=True))
|
187 |
+
# Update visibility and image for each captioning row and image
|
188 |
+
for i in range(1, MAX_IMAGES + 1):
|
189 |
+
# Determine if the current row and image should be visible
|
190 |
+
visible = i <= len(uploaded_images)
|
191 |
+
|
192 |
+
# Update visibility of the captioning row
|
193 |
+
updates.append(gr.update(visible=visible))
|
194 |
+
|
195 |
+
# Update for image component - display image if available, otherwise hide
|
196 |
+
image_value = uploaded_images[i - 1] if visible else None
|
197 |
+
updates.append(gr.update(value=image_value, visible=visible))
|
198 |
+
|
199 |
+
corresponding_caption = False
|
200 |
+
if(image_value):
|
201 |
+
base_name = os.path.splitext(os.path.basename(image_value))[0]
|
202 |
+
if base_name in txt_files_dict:
|
203 |
+
with open(txt_files_dict[base_name], 'r') as file:
|
204 |
+
corresponding_caption = file.read()
|
205 |
+
|
206 |
+
# Update value of captioning area
|
207 |
+
text_value = corresponding_caption if visible and corresponding_caption else concept_sentence if visible and concept_sentence else None
|
208 |
+
updates.append(gr.update(value=text_value, visible=visible))
|
209 |
+
|
210 |
+
# Update for the sample caption area
|
211 |
+
updates.append(gr.update(visible=True))
|
212 |
+
updates.append(gr.update(visible=True))
|
213 |
+
|
214 |
+
return updates
|
215 |
+
|
216 |
+
def hide_captioning():
|
217 |
+
return gr.update(visible=False), gr.update(visible=False)
|
218 |
+
|
219 |
+
def resize_image(image_path, output_path, size):
|
220 |
+
with Image.open(image_path) as img:
|
221 |
+
width, height = img.size
|
222 |
+
if width < height:
|
223 |
+
new_width = size
|
224 |
+
new_height = int((size/width) * height)
|
225 |
+
else:
|
226 |
+
new_height = size
|
227 |
+
new_width = int((size/height) * width)
|
228 |
+
print(f"resize {image_path} : {new_width}x{new_height}")
|
229 |
+
img_resized = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
230 |
+
img_resized.save(output_path)
|
231 |
+
|
232 |
+
def create_dataset(destination_folder, size, *inputs):
|
233 |
+
print("Creating dataset")
|
234 |
+
images = inputs[0]
|
235 |
+
if not os.path.exists(destination_folder):
|
236 |
+
os.makedirs(destination_folder)
|
237 |
+
|
238 |
+
for index, image in enumerate(images):
|
239 |
+
# copy the images to the datasets folder
|
240 |
+
new_image_path = shutil.copy(image, destination_folder)
|
241 |
+
|
242 |
+
# if it's a caption text file skip the next bit
|
243 |
+
ext = os.path.splitext(new_image_path)[-1].lower()
|
244 |
+
if ext == '.txt':
|
245 |
+
continue
|
246 |
+
|
247 |
+
# resize the images
|
248 |
+
resize_image(new_image_path, new_image_path, size)
|
249 |
+
|
250 |
+
# copy the captions
|
251 |
+
|
252 |
+
original_caption = inputs[index + 1]
|
253 |
+
|
254 |
+
image_file_name = os.path.basename(new_image_path)
|
255 |
+
caption_file_name = os.path.splitext(image_file_name)[0] + ".txt"
|
256 |
+
caption_path = resolve_path_without_quotes(os.path.join(destination_folder, caption_file_name))
|
257 |
+
print(f"image_path={new_image_path}, caption_path = {caption_path}, original_caption={original_caption}")
|
258 |
+
# if caption_path exists, do not write
|
259 |
+
if os.path.exists(caption_path):
|
260 |
+
print(f"{caption_path} already exists. use the existing .txt file")
|
261 |
+
else:
|
262 |
+
print(f"{caption_path} create a .txt caption file")
|
263 |
+
with open(caption_path, 'w') as file:
|
264 |
+
file.write(original_caption)
|
265 |
+
|
266 |
+
print(f"destination_folder {destination_folder}")
|
267 |
+
return destination_folder
|
268 |
+
|
269 |
+
|
270 |
+
def run_captioning(images, concept_sentence, *captions):
|
271 |
+
print(f"run_captioning")
|
272 |
+
print(f"concept sentence {concept_sentence}")
|
273 |
+
print(f"captions {captions}")
|
274 |
+
#Load internally to not consume resources for training
|
275 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
276 |
+
print(f"device={device}")
|
277 |
+
torch_dtype = torch.float16
|
278 |
+
model = AutoModelForCausalLM.from_pretrained(
|
279 |
+
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
|
280 |
+
).to(device)
|
281 |
+
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
|
282 |
+
|
283 |
+
captions = list(captions)
|
284 |
+
for i, image_path in enumerate(images):
|
285 |
+
print(captions[i])
|
286 |
+
if isinstance(image_path, str): # If image is a file path
|
287 |
+
image = Image.open(image_path).convert("RGB")
|
288 |
+
|
289 |
+
prompt = "<DETAILED_CAPTION>"
|
290 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
291 |
+
print(f"inputs {inputs}")
|
292 |
+
|
293 |
+
generated_ids = model.generate(
|
294 |
+
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
|
295 |
+
)
|
296 |
+
print(f"generated_ids {generated_ids}")
|
297 |
+
|
298 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
299 |
+
print(f"generated_text: {generated_text}")
|
300 |
+
parsed_answer = processor.post_process_generation(
|
301 |
+
generated_text, task=prompt, image_size=(image.width, image.height)
|
302 |
+
)
|
303 |
+
print(f"parsed_answer = {parsed_answer}")
|
304 |
+
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
|
305 |
+
print(f"caption_text = {caption_text}, concept_sentence={concept_sentence}")
|
306 |
+
if concept_sentence:
|
307 |
+
caption_text = f"{concept_sentence} {caption_text}"
|
308 |
+
captions[i] = caption_text
|
309 |
+
|
310 |
+
yield captions
|
311 |
+
model.to("cpu")
|
312 |
+
del model
|
313 |
+
del processor
|
314 |
+
if torch.cuda.is_available():
|
315 |
+
torch.cuda.empty_cache()
|
316 |
+
|
317 |
+
def recursive_update(d, u):
|
318 |
+
for k, v in u.items():
|
319 |
+
if isinstance(v, dict) and v:
|
320 |
+
d[k] = recursive_update(d.get(k, {}), v)
|
321 |
+
else:
|
322 |
+
d[k] = v
|
323 |
+
return d
|
324 |
+
|
325 |
+
def download(base_model):
|
326 |
+
model = models[base_model]
|
327 |
+
model_file = model["file"]
|
328 |
+
repo = model["repo"]
|
329 |
+
|
330 |
+
# download unet
|
331 |
+
if base_model == "flux-dev" or base_model == "flux-schnell":
|
332 |
+
unet_folder = "models/unet"
|
333 |
+
else:
|
334 |
+
unet_folder = f"models/unet/{repo}"
|
335 |
+
unet_path = os.path.join(unet_folder, model_file)
|
336 |
+
if not os.path.exists(unet_path):
|
337 |
+
os.makedirs(unet_folder, exist_ok=True)
|
338 |
+
gr.Info(f"Downloading base model: {base_model}. Please wait. (You can check the terminal for the download progress)", duration=None)
|
339 |
+
print(f"download {base_model}")
|
340 |
+
hf_hub_download(repo_id=repo, local_dir=unet_folder, filename=model_file)
|
341 |
+
|
342 |
+
# download vae
|
343 |
+
vae_folder = "models/vae"
|
344 |
+
vae_path = os.path.join(vae_folder, "ae.sft")
|
345 |
+
if not os.path.exists(vae_path):
|
346 |
+
os.makedirs(vae_folder, exist_ok=True)
|
347 |
+
gr.Info(f"Downloading vae")
|
348 |
+
print(f"downloading ae.sft...")
|
349 |
+
hf_hub_download(repo_id="cocktailpeanut/xulf-dev", local_dir=vae_folder, filename="ae.sft")
|
350 |
+
|
351 |
+
# download clip
|
352 |
+
clip_folder = "models/clip"
|
353 |
+
clip_l_path = os.path.join(clip_folder, "clip_l.safetensors")
|
354 |
+
if not os.path.exists(clip_l_path):
|
355 |
+
os.makedirs(clip_folder, exist_ok=True)
|
356 |
+
gr.Info(f"Downloading clip...")
|
357 |
+
print(f"download clip_l.safetensors")
|
358 |
+
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", local_dir=clip_folder, filename="clip_l.safetensors")
|
359 |
+
|
360 |
+
# download t5xxl
|
361 |
+
t5xxl_path = os.path.join(clip_folder, "t5xxl_fp16.safetensors")
|
362 |
+
if not os.path.exists(t5xxl_path):
|
363 |
+
print(f"download t5xxl_fp16.safetensors")
|
364 |
+
gr.Info(f"Downloading t5xxl...")
|
365 |
+
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", local_dir=clip_folder, filename="t5xxl_fp16.safetensors")
|
366 |
+
|
367 |
+
|
368 |
+
def resolve_path(p):
|
369 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
370 |
+
norm_path = os.path.normpath(os.path.join(current_dir, p))
|
371 |
+
return f"\"{norm_path}\""
|
372 |
+
def resolve_path_without_quotes(p):
|
373 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
374 |
+
norm_path = os.path.normpath(os.path.join(current_dir, p))
|
375 |
+
return norm_path
|
376 |
+
|
377 |
+
def gen_sh(
|
378 |
+
base_model,
|
379 |
+
output_name,
|
380 |
+
resolution,
|
381 |
+
seed,
|
382 |
+
workers,
|
383 |
+
learning_rate,
|
384 |
+
network_dim,
|
385 |
+
max_train_epochs,
|
386 |
+
save_every_n_epochs,
|
387 |
+
timestep_sampling,
|
388 |
+
guidance_scale,
|
389 |
+
vram,
|
390 |
+
sample_prompts,
|
391 |
+
sample_every_n_steps,
|
392 |
+
*advanced_components
|
393 |
+
):
|
394 |
+
|
395 |
+
print(f"gen_sh: network_dim:{network_dim}, max_train_epochs={max_train_epochs}, save_every_n_epochs={save_every_n_epochs}, timestep_sampling={timestep_sampling}, guidance_scale={guidance_scale}, vram={vram}, sample_prompts={sample_prompts}, sample_every_n_steps={sample_every_n_steps}")
|
396 |
+
|
397 |
+
output_dir = resolve_path(f"outputs/{output_name}")
|
398 |
+
sample_prompts_path = resolve_path(f"outputs/{output_name}/sample_prompts.txt")
|
399 |
+
|
400 |
+
line_break = "\\"
|
401 |
+
file_type = "sh"
|
402 |
+
if sys.platform == "win32":
|
403 |
+
line_break = "^"
|
404 |
+
file_type = "bat"
|
405 |
+
|
406 |
+
############# Sample args ########################
|
407 |
+
sample = ""
|
408 |
+
if len(sample_prompts) > 0 and sample_every_n_steps > 0:
|
409 |
+
sample = f"""--sample_prompts={sample_prompts_path} --sample_every_n_steps="{sample_every_n_steps}" {line_break}"""
|
410 |
+
|
411 |
+
|
412 |
+
############# Optimizer args ########################
|
413 |
+
# if vram == "8G":
|
414 |
+
# optimizer = f"""--optimizer_type adafactor {line_break}
|
415 |
+
# --optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
|
416 |
+
# --split_mode {line_break}
|
417 |
+
# --network_args "train_blocks=single" {line_break}
|
418 |
+
# --lr_scheduler constant_with_warmup {line_break}
|
419 |
+
# --max_grad_norm 0.0 {line_break}"""
|
420 |
+
if vram == "16G":
|
421 |
+
# 16G VRAM
|
422 |
+
optimizer = f"""--optimizer_type adafactor {line_break}
|
423 |
+
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
|
424 |
+
--lr_scheduler constant_with_warmup {line_break}
|
425 |
+
--max_grad_norm 0.0 {line_break}"""
|
426 |
+
elif vram == "12G":
|
427 |
+
# 12G VRAM
|
428 |
+
optimizer = f"""--optimizer_type adafactor {line_break}
|
429 |
+
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
|
430 |
+
--split_mode {line_break}
|
431 |
+
--network_args "train_blocks=single" {line_break}
|
432 |
+
--lr_scheduler constant_with_warmup {line_break}
|
433 |
+
--max_grad_norm 0.0 {line_break}"""
|
434 |
+
else:
|
435 |
+
# 20G+ VRAM
|
436 |
+
optimizer = f"--optimizer_type adamw8bit {line_break}"
|
437 |
+
|
438 |
+
|
439 |
+
#######################################################
|
440 |
+
model_config = models[base_model]
|
441 |
+
model_file = model_config["file"]
|
442 |
+
repo = model_config["repo"]
|
443 |
+
if base_model == "flux-dev" or base_model == "flux-schnell":
|
444 |
+
model_folder = "models/unet"
|
445 |
+
else:
|
446 |
+
model_folder = f"models/unet/{repo}"
|
447 |
+
model_path = os.path.join(model_folder, model_file)
|
448 |
+
pretrained_model_path = resolve_path(model_path)
|
449 |
+
|
450 |
+
clip_path = resolve_path("models/clip/clip_l.safetensors")
|
451 |
+
t5_path = resolve_path("models/clip/t5xxl_fp16.safetensors")
|
452 |
+
ae_path = resolve_path("models/vae/ae.sft")
|
453 |
+
sh = f"""accelerate launch {line_break}
|
454 |
+
--mixed_precision bf16 {line_break}
|
455 |
+
--num_cpu_threads_per_process 1 {line_break}
|
456 |
+
sd-scripts/flux_train_network.py {line_break}
|
457 |
+
--pretrained_model_name_or_path {pretrained_model_path} {line_break}
|
458 |
+
--clip_l {clip_path} {line_break}
|
459 |
+
--t5xxl {t5_path} {line_break}
|
460 |
+
--ae {ae_path} {line_break}
|
461 |
+
--cache_latents_to_disk {line_break}
|
462 |
+
--save_model_as safetensors {line_break}
|
463 |
+
--sdpa --persistent_data_loader_workers {line_break}
|
464 |
+
--max_data_loader_n_workers {workers} {line_break}
|
465 |
+
--seed {seed} {line_break}
|
466 |
+
--gradient_checkpointing {line_break}
|
467 |
+
--mixed_precision bf16 {line_break}
|
468 |
+
--save_precision bf16 {line_break}
|
469 |
+
--network_module networks.lora_flux {line_break}
|
470 |
+
--network_dim {network_dim} {line_break}
|
471 |
+
{optimizer}{sample}
|
472 |
+
--learning_rate {learning_rate} {line_break}
|
473 |
+
--cache_text_encoder_outputs {line_break}
|
474 |
+
--cache_text_encoder_outputs_to_disk {line_break}
|
475 |
+
--fp8_base {line_break}
|
476 |
+
--highvram {line_break}
|
477 |
+
--max_train_epochs {max_train_epochs} {line_break}
|
478 |
+
--save_every_n_epochs {save_every_n_epochs} {line_break}
|
479 |
+
--dataset_config {resolve_path(f"outputs/{output_name}/dataset.toml")} {line_break}
|
480 |
+
--output_dir {output_dir} {line_break}
|
481 |
+
--output_name {output_name} {line_break}
|
482 |
+
--timestep_sampling {timestep_sampling} {line_break}
|
483 |
+
--discrete_flow_shift 3.1582 {line_break}
|
484 |
+
--model_prediction_type raw {line_break}
|
485 |
+
--guidance_scale {guidance_scale} {line_break}
|
486 |
+
--loss_type l2 {line_break}"""
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
+
############# Advanced args ########################
|
491 |
+
global advanced_component_ids
|
492 |
+
global original_advanced_component_values
|
493 |
+
|
494 |
+
# check dirty
|
495 |
+
print(f"original_advanced_component_values = {original_advanced_component_values}")
|
496 |
+
advanced_flags = []
|
497 |
+
for i, current_value in enumerate(advanced_components):
|
498 |
+
# print(f"compare {advanced_component_ids[i]}: old={original_advanced_component_values[i]}, new={current_value}")
|
499 |
+
if original_advanced_component_values[i] != current_value:
|
500 |
+
# dirty
|
501 |
+
if current_value == True:
|
502 |
+
# Boolean
|
503 |
+
advanced_flags.append(advanced_component_ids[i])
|
504 |
+
else:
|
505 |
+
# string
|
506 |
+
advanced_flags.append(f"{advanced_component_ids[i]} {current_value}")
|
507 |
+
|
508 |
+
if len(advanced_flags) > 0:
|
509 |
+
advanced_flags_str = f" {line_break}\n ".join(advanced_flags)
|
510 |
+
sh = sh + "\n " + advanced_flags_str
|
511 |
+
|
512 |
+
return sh
|
513 |
+
|
514 |
+
def gen_toml(
|
515 |
+
dataset_folder,
|
516 |
+
resolution,
|
517 |
+
class_tokens,
|
518 |
+
num_repeats
|
519 |
+
):
|
520 |
+
toml = f"""[general]
|
521 |
+
shuffle_caption = false
|
522 |
+
caption_extension = '.txt'
|
523 |
+
keep_tokens = 1
|
524 |
+
|
525 |
+
[[datasets]]
|
526 |
+
resolution = {resolution}
|
527 |
+
batch_size = 1
|
528 |
+
keep_tokens = 1
|
529 |
+
|
530 |
+
[[datasets.subsets]]
|
531 |
+
image_dir = '{resolve_path_without_quotes(dataset_folder)}'
|
532 |
+
class_tokens = '{class_tokens}'
|
533 |
+
num_repeats = {num_repeats}"""
|
534 |
+
return toml
|
535 |
+
|
536 |
+
def update_total_steps(max_train_epochs, num_repeats, images):
|
537 |
+
try:
|
538 |
+
num_images = len(images)
|
539 |
+
total_steps = max_train_epochs * num_images * num_repeats
|
540 |
+
print(f"max_train_epochs={max_train_epochs} num_images={num_images}, num_repeats={num_repeats}, total_steps={total_steps}")
|
541 |
+
return gr.update(value = total_steps)
|
542 |
+
except:
|
543 |
+
print("")
|
544 |
+
|
545 |
+
def set_repo(lora_rows):
|
546 |
+
selected_name = os.path.basename(lora_rows)
|
547 |
+
return gr.update(value=selected_name)
|
548 |
+
|
549 |
+
def get_loras():
|
550 |
+
try:
|
551 |
+
outputs_path = resolve_path_without_quotes(f"outputs")
|
552 |
+
files = os.listdir(outputs_path)
|
553 |
+
folders = [os.path.join(outputs_path, item) for item in files if os.path.isdir(os.path.join(outputs_path, item)) and item != "sample"]
|
554 |
+
folders.sort(key=lambda file: os.path.getctime(file), reverse=True)
|
555 |
+
return folders
|
556 |
+
except Exception as e:
|
557 |
+
return []
|
558 |
+
|
559 |
+
def get_samples(lora_name):
|
560 |
+
output_name = slugify(lora_name)
|
561 |
+
try:
|
562 |
+
samples_path = resolve_path_without_quotes(f"outputs/{output_name}/sample")
|
563 |
+
files = [os.path.join(samples_path, file) for file in os.listdir(samples_path)]
|
564 |
+
files.sort(key=lambda file: os.path.getctime(file), reverse=True)
|
565 |
+
return files
|
566 |
+
except:
|
567 |
+
return []
|
568 |
+
|
569 |
+
def start_training(
|
570 |
+
base_model,
|
571 |
+
lora_name,
|
572 |
+
train_script,
|
573 |
+
train_config,
|
574 |
+
sample_prompts,
|
575 |
+
):
|
576 |
+
# write custom script and toml
|
577 |
+
if not os.path.exists("models"):
|
578 |
+
os.makedirs("models", exist_ok=True)
|
579 |
+
if not os.path.exists("outputs"):
|
580 |
+
os.makedirs("outputs", exist_ok=True)
|
581 |
+
output_name = slugify(lora_name)
|
582 |
+
output_dir = resolve_path_without_quotes(f"outputs/{output_name}")
|
583 |
+
if not os.path.exists(output_dir):
|
584 |
+
os.makedirs(output_dir, exist_ok=True)
|
585 |
+
|
586 |
+
download(base_model)
|
587 |
+
|
588 |
+
file_type = "sh"
|
589 |
+
if sys.platform == "win32":
|
590 |
+
file_type = "bat"
|
591 |
+
|
592 |
+
sh_filename = f"train.{file_type}"
|
593 |
+
sh_filepath = resolve_path_without_quotes(f"outputs/{output_name}/{sh_filename}")
|
594 |
+
with open(sh_filepath, 'w', encoding="utf-8") as file:
|
595 |
+
file.write(train_script)
|
596 |
+
gr.Info(f"Generated train script at {sh_filename}")
|
597 |
+
|
598 |
+
|
599 |
+
dataset_path = resolve_path_without_quotes(f"outputs/{output_name}/dataset.toml")
|
600 |
+
with open(dataset_path, 'w', encoding="utf-8") as file:
|
601 |
+
file.write(train_config)
|
602 |
+
gr.Info(f"Generated dataset.toml")
|
603 |
+
|
604 |
+
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
|
605 |
+
with open(sample_prompts_path, 'w', encoding='utf-8') as file:
|
606 |
+
file.write(sample_prompts)
|
607 |
+
gr.Info(f"Generated sample_prompts.txt")
|
608 |
+
|
609 |
+
# Train
|
610 |
+
if sys.platform == "win32":
|
611 |
+
command = sh_filepath
|
612 |
+
else:
|
613 |
+
command = f"bash \"{sh_filepath}\""
|
614 |
+
|
615 |
+
# Use Popen to run the command and capture output in real-time
|
616 |
+
env = os.environ.copy()
|
617 |
+
env['PYTHONIOENCODING'] = 'utf-8'
|
618 |
+
env['LOG_LEVEL'] = 'DEBUG'
|
619 |
+
runner = LogsViewRunner()
|
620 |
+
cwd = os.path.dirname(os.path.abspath(__file__))
|
621 |
+
gr.Info(f"Started training")
|
622 |
+
yield from runner.run_command([command], cwd=cwd)
|
623 |
+
yield runner.log(f"Runner: {runner}")
|
624 |
+
|
625 |
+
# Generate Readme
|
626 |
+
config = toml.loads(train_config)
|
627 |
+
concept_sentence = config['datasets'][0]['subsets'][0]['class_tokens']
|
628 |
+
print(f"concept_sentence={concept_sentence}")
|
629 |
+
print(f"lora_name {lora_name}, concept_sentence={concept_sentence}, output_name={output_name}")
|
630 |
+
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
|
631 |
+
with open(sample_prompts_path, "r", encoding="utf-8") as f:
|
632 |
+
lines = f.readlines()
|
633 |
+
sample_prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
|
634 |
+
md = readme(base_model, lora_name, concept_sentence, sample_prompts)
|
635 |
+
readme_path = resolve_path_without_quotes(f"outputs/{output_name}/README.md")
|
636 |
+
with open(readme_path, "w", encoding="utf-8") as f:
|
637 |
+
f.write(md)
|
638 |
+
|
639 |
+
gr.Info(f"Training Complete. Check the outputs folder for the LoRA files.", duration=None)
|
640 |
+
|
641 |
+
|
642 |
+
def update(
|
643 |
+
base_model,
|
644 |
+
lora_name,
|
645 |
+
resolution,
|
646 |
+
seed,
|
647 |
+
workers,
|
648 |
+
class_tokens,
|
649 |
+
learning_rate,
|
650 |
+
network_dim,
|
651 |
+
max_train_epochs,
|
652 |
+
save_every_n_epochs,
|
653 |
+
timestep_sampling,
|
654 |
+
guidance_scale,
|
655 |
+
vram,
|
656 |
+
num_repeats,
|
657 |
+
sample_prompts,
|
658 |
+
sample_every_n_steps,
|
659 |
+
*advanced_components,
|
660 |
+
):
|
661 |
+
output_name = slugify(lora_name)
|
662 |
+
dataset_folder = str(f"datasets/{output_name}")
|
663 |
+
sh = gen_sh(
|
664 |
+
base_model,
|
665 |
+
output_name,
|
666 |
+
resolution,
|
667 |
+
seed,
|
668 |
+
workers,
|
669 |
+
learning_rate,
|
670 |
+
network_dim,
|
671 |
+
max_train_epochs,
|
672 |
+
save_every_n_epochs,
|
673 |
+
timestep_sampling,
|
674 |
+
guidance_scale,
|
675 |
+
vram,
|
676 |
+
sample_prompts,
|
677 |
+
sample_every_n_steps,
|
678 |
+
*advanced_components,
|
679 |
+
)
|
680 |
+
toml = gen_toml(
|
681 |
+
dataset_folder,
|
682 |
+
resolution,
|
683 |
+
class_tokens,
|
684 |
+
num_repeats
|
685 |
+
)
|
686 |
+
return gr.update(value=sh), gr.update(value=toml), dataset_folder
|
687 |
+
|
688 |
+
"""
|
689 |
+
demo.load(fn=loaded, js=js, outputs=[hf_token, hf_login, hf_logout, hf_account])
|
690 |
+
"""
|
691 |
+
def loaded():
|
692 |
+
global current_account
|
693 |
+
current_account = account_hf()
|
694 |
+
print(f"current_account={current_account}")
|
695 |
+
if current_account != None:
|
696 |
+
return gr.update(value=current_account["token"]), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
|
697 |
+
else:
|
698 |
+
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
|
699 |
+
|
700 |
+
def update_sample(concept_sentence):
|
701 |
+
return gr.update(value=concept_sentence)
|
702 |
+
|
703 |
+
def refresh_publish_tab():
|
704 |
+
loras = get_loras()
|
705 |
+
return gr.Dropdown(label="Trained LoRAs", choices=loras)
|
706 |
+
|
707 |
+
def init_advanced():
|
708 |
+
# if basic_args
|
709 |
+
basic_args = {
|
710 |
+
'pretrained_model_name_or_path',
|
711 |
+
'clip_l',
|
712 |
+
't5xxl',
|
713 |
+
'ae',
|
714 |
+
'cache_latents_to_disk',
|
715 |
+
'save_model_as',
|
716 |
+
'sdpa',
|
717 |
+
'persistent_data_loader_workers',
|
718 |
+
'max_data_loader_n_workers',
|
719 |
+
'seed',
|
720 |
+
'gradient_checkpointing',
|
721 |
+
'mixed_precision',
|
722 |
+
'save_precision',
|
723 |
+
'network_module',
|
724 |
+
'network_dim',
|
725 |
+
'learning_rate',
|
726 |
+
'cache_text_encoder_outputs',
|
727 |
+
'cache_text_encoder_outputs_to_disk',
|
728 |
+
'fp8_base',
|
729 |
+
'highvram',
|
730 |
+
'max_train_epochs',
|
731 |
+
'save_every_n_epochs',
|
732 |
+
'dataset_config',
|
733 |
+
'output_dir',
|
734 |
+
'output_name',
|
735 |
+
'timestep_sampling',
|
736 |
+
'discrete_flow_shift',
|
737 |
+
'model_prediction_type',
|
738 |
+
'guidance_scale',
|
739 |
+
'loss_type',
|
740 |
+
'optimizer_type',
|
741 |
+
'optimizer_args',
|
742 |
+
'lr_scheduler',
|
743 |
+
'sample_prompts',
|
744 |
+
'sample_every_n_steps',
|
745 |
+
'max_grad_norm',
|
746 |
+
'split_mode',
|
747 |
+
'network_args'
|
748 |
+
}
|
749 |
+
|
750 |
+
# generate a UI config
|
751 |
+
# if not in basic_args, create a simple form
|
752 |
+
parser = train_network.setup_parser()
|
753 |
+
flux_train_utils.add_flux_train_arguments(parser)
|
754 |
+
args_info = {}
|
755 |
+
for action in parser._actions:
|
756 |
+
if action.dest != 'help': # Skip the default help argument
|
757 |
+
# if the dest is included in basic_args
|
758 |
+
args_info[action.dest] = {
|
759 |
+
"action": action.option_strings, # Option strings like '--use_8bit_adam'
|
760 |
+
"type": action.type, # Type of the argument
|
761 |
+
"help": action.help, # Help message
|
762 |
+
"default": action.default, # Default value, if any
|
763 |
+
"required": action.required # Whether the argument is required
|
764 |
+
}
|
765 |
+
temp = []
|
766 |
+
for key in args_info:
|
767 |
+
temp.append({ 'key': key, 'action': args_info[key] })
|
768 |
+
temp.sort(key=lambda x: x['key'])
|
769 |
+
advanced_component_ids = []
|
770 |
+
advanced_components = []
|
771 |
+
for item in temp:
|
772 |
+
key = item['key']
|
773 |
+
action = item['action']
|
774 |
+
if key in basic_args:
|
775 |
+
print("")
|
776 |
+
else:
|
777 |
+
action_type = str(action['type'])
|
778 |
+
component = None
|
779 |
+
with gr.Column(min_width=300):
|
780 |
+
if action_type == "None":
|
781 |
+
# radio
|
782 |
+
component = gr.Checkbox()
|
783 |
+
# elif action_type == "<class 'str'>":
|
784 |
+
# component = gr.Textbox()
|
785 |
+
# elif action_type == "<class 'int'>":
|
786 |
+
# component = gr.Number(precision=0)
|
787 |
+
# elif action_type == "<class 'float'>":
|
788 |
+
# component = gr.Number()
|
789 |
+
# elif "int_or_float" in action_type:
|
790 |
+
# component = gr.Number()
|
791 |
+
else:
|
792 |
+
component = gr.Textbox(value="")
|
793 |
+
if component != None:
|
794 |
+
component.interactive = True
|
795 |
+
component.elem_id = action['action'][0]
|
796 |
+
component.label = component.elem_id
|
797 |
+
component.elem_classes = ["advanced"]
|
798 |
+
if action['help'] != None:
|
799 |
+
component.info = action['help']
|
800 |
+
advanced_components.append(component)
|
801 |
+
advanced_component_ids.append(component.elem_id)
|
802 |
+
return advanced_components, advanced_component_ids
|
803 |
+
|
804 |
+
|
805 |
+
theme = gr.themes.Monochrome(
|
806 |
+
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
|
807 |
+
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
|
808 |
+
)
|
809 |
+
css = """
|
810 |
+
@keyframes rotate {
|
811 |
+
0% {
|
812 |
+
transform: rotate(0deg);
|
813 |
+
}
|
814 |
+
100% {
|
815 |
+
transform: rotate(360deg);
|
816 |
+
}
|
817 |
+
}
|
818 |
+
#advanced_options .advanced:nth-child(even) { background: rgba(0,0,100,0.04) !important; }
|
819 |
+
h1{font-family: georgia; font-style: italic; font-weight: bold; font-size: 30px; letter-spacing: -1px;}
|
820 |
+
h3{margin-top: 0}
|
821 |
+
.tabitem{border: 0px}
|
822 |
+
.group_padding{}
|
823 |
+
nav{position: fixed; top: 0; left: 0; right: 0; z-index: 1000; text-align: center; padding: 10px; box-sizing: border-box; display: flex; align-items: center; backdrop-filter: blur(10px); }
|
824 |
+
nav button { background: none; color: firebrick; font-weight: bold; border: 2px solid firebrick; padding: 5px 10px; border-radius: 5px; font-size: 14px; }
|
825 |
+
nav img { height: 40px; width: 40px; border-radius: 40px; }
|
826 |
+
nav img.rotate { animation: rotate 2s linear infinite; }
|
827 |
+
.flexible { flex-grow: 1; }
|
828 |
+
.tast-details { margin: 10px 0 !important; }
|
829 |
+
.toast-wrap { bottom: var(--size-4) !important; top: auto !important; border: none !important; backdrop-filter: blur(10px); }
|
830 |
+
.toast-title, .toast-text, .toast-icon, .toast-close { color: black !important; font-size: 14px; }
|
831 |
+
.toast-body { border: none !important; }
|
832 |
+
#terminal { box-shadow: none !important; margin-bottom: 25px; background: rgba(0,0,0,0.03); }
|
833 |
+
#terminal .generating { border: none !important; }
|
834 |
+
#terminal label { position: absolute !important; }
|
835 |
+
.tabs { margin-top: 50px; }
|
836 |
+
.hidden { display: none !important; }
|
837 |
+
.codemirror-wrapper .cm-line { font-size: 12px !important; }
|
838 |
+
label { font-weight: bold !important; }
|
839 |
+
#start_training.clicked { background: silver; color: black; }
|
840 |
+
"""
|
841 |
+
|
842 |
+
js = """
|
843 |
+
function() {
|
844 |
+
let autoscroll = document.querySelector("#autoscroll")
|
845 |
+
if (window.iidxx) {
|
846 |
+
window.clearInterval(window.iidxx);
|
847 |
+
}
|
848 |
+
window.iidxx = window.setInterval(function() {
|
849 |
+
let text=document.querySelector(".codemirror-wrapper .cm-line").innerText.trim()
|
850 |
+
let img = document.querySelector("#logo")
|
851 |
+
if (text.length > 0) {
|
852 |
+
autoscroll.classList.remove("hidden")
|
853 |
+
if (autoscroll.classList.contains("on")) {
|
854 |
+
autoscroll.textContent = "Autoscroll ON"
|
855 |
+
window.scrollTo(0, document.body.scrollHeight, { behavior: "smooth" });
|
856 |
+
img.classList.add("rotate")
|
857 |
+
} else {
|
858 |
+
autoscroll.textContent = "Autoscroll OFF"
|
859 |
+
img.classList.remove("rotate")
|
860 |
+
}
|
861 |
+
}
|
862 |
+
}, 500);
|
863 |
+
console.log("autoscroll", autoscroll)
|
864 |
+
autoscroll.addEventListener("click", (e) => {
|
865 |
+
autoscroll.classList.toggle("on")
|
866 |
+
})
|
867 |
+
function debounce(fn, delay) {
|
868 |
+
let timeoutId;
|
869 |
+
return function(...args) {
|
870 |
+
clearTimeout(timeoutId);
|
871 |
+
timeoutId = setTimeout(() => fn(...args), delay);
|
872 |
+
};
|
873 |
+
}
|
874 |
+
|
875 |
+
function handleClick() {
|
876 |
+
console.log("refresh")
|
877 |
+
document.querySelector("#refresh").click();
|
878 |
+
}
|
879 |
+
const debouncedClick = debounce(handleClick, 1000);
|
880 |
+
document.addEventListener("input", debouncedClick);
|
881 |
+
|
882 |
+
document.querySelector("#start_training").addEventListener("click", (e) => {
|
883 |
+
e.target.classList.add("clicked")
|
884 |
+
e.target.innerHTML = "Training..."
|
885 |
+
})
|
886 |
+
|
887 |
+
}
|
888 |
+
"""
|
889 |
+
|
890 |
+
current_account = account_hf()
|
891 |
+
print(f"current_account={current_account}")
|
892 |
+
|
893 |
+
with gr.Blocks(elem_id="app", theme=theme, css=css, fill_width=True) as demo:
|
894 |
+
with gr.Tabs() as tabs:
|
895 |
+
with gr.TabItem("Gym"):
|
896 |
+
output_components = []
|
897 |
+
with gr.Row():
|
898 |
+
gr.HTML("""<nav>
|
899 |
+
<img id='logo' src='/file=icon.png' width='80' height='80'>
|
900 |
+
<div class='flexible'></div>
|
901 |
+
<button id='autoscroll' class='on hidden'></button>
|
902 |
+
</nav>
|
903 |
+
""")
|
904 |
+
with gr.Row(elem_id='container'):
|
905 |
+
with gr.Column():
|
906 |
+
gr.Markdown(
|
907 |
+
"""# Step 1. LoRA Info
|
908 |
+
<p style="margin-top:0">Configure your LoRA train settings.</p>
|
909 |
+
""", elem_classes="group_padding")
|
910 |
+
lora_name = gr.Textbox(
|
911 |
+
label="The name of your LoRA",
|
912 |
+
info="This has to be a unique name",
|
913 |
+
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
|
914 |
+
)
|
915 |
+
concept_sentence = gr.Textbox(
|
916 |
+
elem_id="--concept_sentence",
|
917 |
+
label="Trigger word/sentence",
|
918 |
+
info="Trigger word or sentence to be used",
|
919 |
+
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
|
920 |
+
interactive=True,
|
921 |
+
)
|
922 |
+
model_names = list(models.keys())
|
923 |
+
print(f"model_names={model_names}")
|
924 |
+
base_model = gr.Dropdown(label="Base model (edit the models.yaml file to add more to this list)", choices=model_names, value=model_names[0])
|
925 |
+
vram = gr.Radio(["20G", "16G", "12G" ], value="20G", label="VRAM", interactive=True)
|
926 |
+
num_repeats = gr.Number(value=10, precision=0, label="Repeat trains per image", interactive=True)
|
927 |
+
max_train_epochs = gr.Number(label="Max Train Epochs", value=16, interactive=True)
|
928 |
+
total_steps = gr.Number(0, interactive=False, label="Expected training steps")
|
929 |
+
sample_prompts = gr.Textbox("", lines=5, label="Sample Image Prompts (Separate with new lines)", interactive=True)
|
930 |
+
sample_every_n_steps = gr.Number(0, precision=0, label="Sample Image Every N Steps", interactive=True)
|
931 |
+
resolution = gr.Number(value=512, precision=0, label="Resize dataset images")
|
932 |
+
with gr.Column():
|
933 |
+
gr.Markdown(
|
934 |
+
"""# Step 2. Dataset
|
935 |
+
<p style="margin-top:0">Make sure the captions include the trigger word.</p>
|
936 |
+
""", elem_classes="group_padding")
|
937 |
+
with gr.Group():
|
938 |
+
images = gr.File(
|
939 |
+
file_types=["image", ".txt"],
|
940 |
+
label="Upload your images",
|
941 |
+
#info="If you want, you can also manually upload caption files that match the image names (example: img0.png => img0.txt)",
|
942 |
+
file_count="multiple",
|
943 |
+
interactive=True,
|
944 |
+
visible=True,
|
945 |
+
scale=1,
|
946 |
+
)
|
947 |
+
with gr.Group(visible=False) as captioning_area:
|
948 |
+
do_captioning = gr.Button("Add AI captions with Florence-2")
|
949 |
+
output_components.append(captioning_area)
|
950 |
+
#output_components = [captioning_area]
|
951 |
+
caption_list = []
|
952 |
+
for i in range(1, MAX_IMAGES + 1):
|
953 |
+
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
|
954 |
+
with locals()[f"captioning_row_{i}"]:
|
955 |
+
locals()[f"image_{i}"] = gr.Image(
|
956 |
+
type="filepath",
|
957 |
+
width=111,
|
958 |
+
height=111,
|
959 |
+
min_width=111,
|
960 |
+
interactive=False,
|
961 |
+
scale=2,
|
962 |
+
show_label=False,
|
963 |
+
show_share_button=False,
|
964 |
+
show_download_button=False,
|
965 |
+
)
|
966 |
+
locals()[f"caption_{i}"] = gr.Textbox(
|
967 |
+
label=f"Caption {i}", scale=15, interactive=True
|
968 |
+
)
|
969 |
+
|
970 |
+
output_components.append(locals()[f"captioning_row_{i}"])
|
971 |
+
output_components.append(locals()[f"image_{i}"])
|
972 |
+
output_components.append(locals()[f"caption_{i}"])
|
973 |
+
caption_list.append(locals()[f"caption_{i}"])
|
974 |
+
with gr.Column():
|
975 |
+
gr.Markdown(
|
976 |
+
"""# Step 3. Train
|
977 |
+
<p style="margin-top:0">Press start to start training.</p>
|
978 |
+
""", elem_classes="group_padding")
|
979 |
+
refresh = gr.Button("Refresh", elem_id="refresh", visible=False)
|
980 |
+
start = gr.Button("Start training", visible=False, elem_id="start_training")
|
981 |
+
output_components.append(start)
|
982 |
+
train_script = gr.Textbox(label="Train script", max_lines=100, interactive=True)
|
983 |
+
train_config = gr.Textbox(label="Train config", max_lines=100, interactive=True)
|
984 |
+
with gr.Accordion("Advanced options", elem_id='advanced_options', open=False):
|
985 |
+
with gr.Row():
|
986 |
+
with gr.Column(min_width=300):
|
987 |
+
seed = gr.Number(label="--seed", info="Seed", value=42, interactive=True)
|
988 |
+
with gr.Column(min_width=300):
|
989 |
+
workers = gr.Number(label="--max_data_loader_n_workers", info="Number of Workers", value=2, interactive=True)
|
990 |
+
with gr.Column(min_width=300):
|
991 |
+
learning_rate = gr.Textbox(label="--learning_rate", info="Learning Rate", value="8e-4", interactive=True)
|
992 |
+
with gr.Column(min_width=300):
|
993 |
+
save_every_n_epochs = gr.Number(label="--save_every_n_epochs", info="Save every N epochs", value=4, interactive=True)
|
994 |
+
with gr.Column(min_width=300):
|
995 |
+
guidance_scale = gr.Number(label="--guidance_scale", info="Guidance Scale", value=1.0, interactive=True)
|
996 |
+
with gr.Column(min_width=300):
|
997 |
+
timestep_sampling = gr.Textbox(label="--timestep_sampling", info="Timestep Sampling", value="shift", interactive=True)
|
998 |
+
with gr.Column(min_width=300):
|
999 |
+
network_dim = gr.Number(label="--network_dim", info="LoRA Rank", value=4, minimum=4, maximum=128, step=4, interactive=True)
|
1000 |
+
advanced_components, advanced_component_ids = init_advanced()
|
1001 |
+
with gr.Row():
|
1002 |
+
terminal = LogsView(label="Train log", elem_id="terminal")
|
1003 |
+
with gr.Row():
|
1004 |
+
gallery = gr.Gallery(get_samples, inputs=[lora_name], label="Samples", every=10, columns=6)
|
1005 |
+
|
1006 |
+
with gr.TabItem("Publish") as publish_tab:
|
1007 |
+
hf_token = gr.Textbox(label="Huggingface Token")
|
1008 |
+
hf_login = gr.Button("Login")
|
1009 |
+
hf_logout = gr.Button("Logout")
|
1010 |
+
with gr.Row() as row:
|
1011 |
+
gr.Markdown("**LoRA**")
|
1012 |
+
gr.Markdown("**Upload**")
|
1013 |
+
loras = get_loras()
|
1014 |
+
with gr.Row():
|
1015 |
+
lora_rows = refresh_publish_tab()
|
1016 |
+
with gr.Column():
|
1017 |
+
with gr.Row():
|
1018 |
+
repo_owner = gr.Textbox(label="Account", interactive=False)
|
1019 |
+
repo_name = gr.Textbox(label="Repository Name")
|
1020 |
+
repo_visibility = gr.Textbox(label="Repository Visibility ('public' or 'private')", value="public")
|
1021 |
+
upload_button = gr.Button("Upload to HuggingFace")
|
1022 |
+
upload_button.click(
|
1023 |
+
fn=upload_hf,
|
1024 |
+
inputs=[
|
1025 |
+
base_model,
|
1026 |
+
lora_rows,
|
1027 |
+
repo_owner,
|
1028 |
+
repo_name,
|
1029 |
+
repo_visibility,
|
1030 |
+
hf_token,
|
1031 |
+
]
|
1032 |
+
)
|
1033 |
+
hf_login.click(fn=login_hf, inputs=[hf_token], outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
1034 |
+
hf_logout.click(fn=logout_hf, outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
1035 |
+
|
1036 |
+
|
1037 |
+
publish_tab.select(refresh_publish_tab, outputs=lora_rows)
|
1038 |
+
lora_rows.select(fn=set_repo, inputs=[lora_rows], outputs=[repo_name])
|
1039 |
+
|
1040 |
+
dataset_folder = gr.State()
|
1041 |
+
|
1042 |
+
listeners = [
|
1043 |
+
base_model,
|
1044 |
+
lora_name,
|
1045 |
+
resolution,
|
1046 |
+
seed,
|
1047 |
+
workers,
|
1048 |
+
concept_sentence,
|
1049 |
+
learning_rate,
|
1050 |
+
network_dim,
|
1051 |
+
max_train_epochs,
|
1052 |
+
save_every_n_epochs,
|
1053 |
+
timestep_sampling,
|
1054 |
+
guidance_scale,
|
1055 |
+
vram,
|
1056 |
+
num_repeats,
|
1057 |
+
sample_prompts,
|
1058 |
+
sample_every_n_steps,
|
1059 |
+
*advanced_components
|
1060 |
+
]
|
1061 |
+
advanced_component_ids = [x.elem_id for x in advanced_components]
|
1062 |
+
original_advanced_component_values = [comp.value for comp in advanced_components]
|
1063 |
+
images.upload(
|
1064 |
+
load_captioning,
|
1065 |
+
inputs=[images, concept_sentence],
|
1066 |
+
outputs=output_components
|
1067 |
+
)
|
1068 |
+
images.delete(
|
1069 |
+
load_captioning,
|
1070 |
+
inputs=[images, concept_sentence],
|
1071 |
+
outputs=output_components
|
1072 |
+
)
|
1073 |
+
images.clear(
|
1074 |
+
hide_captioning,
|
1075 |
+
outputs=[captioning_area, start]
|
1076 |
+
)
|
1077 |
+
max_train_epochs.change(
|
1078 |
+
fn=update_total_steps,
|
1079 |
+
inputs=[max_train_epochs, num_repeats, images],
|
1080 |
+
outputs=[total_steps]
|
1081 |
+
)
|
1082 |
+
num_repeats.change(
|
1083 |
+
fn=update_total_steps,
|
1084 |
+
inputs=[max_train_epochs, num_repeats, images],
|
1085 |
+
outputs=[total_steps]
|
1086 |
+
)
|
1087 |
+
images.upload(
|
1088 |
+
fn=update_total_steps,
|
1089 |
+
inputs=[max_train_epochs, num_repeats, images],
|
1090 |
+
outputs=[total_steps]
|
1091 |
+
)
|
1092 |
+
images.delete(
|
1093 |
+
fn=update_total_steps,
|
1094 |
+
inputs=[max_train_epochs, num_repeats, images],
|
1095 |
+
outputs=[total_steps]
|
1096 |
+
)
|
1097 |
+
images.clear(
|
1098 |
+
fn=update_total_steps,
|
1099 |
+
inputs=[max_train_epochs, num_repeats, images],
|
1100 |
+
outputs=[total_steps]
|
1101 |
+
)
|
1102 |
+
concept_sentence.change(fn=update_sample, inputs=[concept_sentence], outputs=sample_prompts)
|
1103 |
+
start.click(fn=create_dataset, inputs=[dataset_folder, resolution, images] + caption_list, outputs=dataset_folder).then(
|
1104 |
+
fn=start_training,
|
1105 |
+
inputs=[
|
1106 |
+
base_model,
|
1107 |
+
lora_name,
|
1108 |
+
train_script,
|
1109 |
+
train_config,
|
1110 |
+
sample_prompts,
|
1111 |
+
],
|
1112 |
+
outputs=terminal,
|
1113 |
+
)
|
1114 |
+
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
|
1115 |
+
demo.load(fn=loaded, js=js, outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
1116 |
+
refresh.click(update, inputs=listeners, outputs=[train_script, train_config, dataset_folder])
|
1117 |
+
if __name__ == "__main__":
|
1118 |
+
cwd = os.path.dirname(os.path.abspath(__file__))
|
1119 |
+
demo.launch(debug=True, show_error=True, allowed_paths=[cwd])
|