File size: 11,350 Bytes
2d48693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864becb
2d48693
864becb
 
 
 
2d48693
 
864becb
 
 
 
2d48693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import typing as t
from functools import partial

import numpy as np
from copy import deepcopy
from .canvas import Canvas

from . import speedup


# 2D part


class Vec2d:
    __slots__ = "x", "y", "arr"

    def __init__(self, *args):
        if len(args) == 1 and isinstance(args[0], Vec3d):
            self.arr = Vec3d.narr
        else:
            assert len(args) == 2
            self.arr = list(args)

        self.x, self.y = [d if isinstance(d, int) else int(d + 0.5) for d in self.arr]

    def __repr__(self):
        return f"Vec2d({self.x}, {self.y})"

    def __truediv__(self, other):
        return (self.y - other.y) / (self.x - other.x)

    def __eq__(self, other):
        return self.x == other.x and self.y == other.y


def draw_line(
    v1: Vec2d, v2: Vec2d, canvas: Canvas, color: t.Union[tuple, str] = "white"
):
    """
    Draw a line with a specified color

    https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
    """
    v1, v2 = deepcopy(v1), deepcopy(v2)
    if v1 == v2:
        canvas.draw((v1.x, v1.y), color=color)
        return

    steep = abs(v1.y - v2.y) > abs(v1.x - v2.x)
    if steep:
        v1.x, v1.y = v1.y, v1.x
        v2.x, v2.y = v2.y, v2.x
    v1, v2 = (v1, v2) if v1.x < v2.x else (v2, v1)
    slope = abs((v1.y - v2.y) / (v1.x - v2.x))
    y = v1.y
    error: float = 0
    incr = 1 if v1.y < v2.y else -1
    dots = []
    for x in range(int(v1.x), int(v2.x + 0.5)):
        dots.append((int(y), x) if steep else (x, int(y)))
        error += slope
        if abs(error) >= 0.5:
            y += incr
            error -= 1

    canvas.draw(dots, color=color)


def draw_triangle(v1, v2, v3, canvas, color, wireframe=False):
    """
    Draw a triangle with 3 ordered vertices

    http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
    """
    _draw_line = partial(draw_line, canvas=canvas, color=color)

    if wireframe:
        _draw_line(v1, v2)
        _draw_line(v2, v3)
        _draw_line(v1, v3)
        return

    def sort_vertices_asc_by_y(vertices):
        return sorted(vertices, key=lambda v: v.y)

    def fill_bottom_flat_triangle(v1, v2, v3):
        invslope1 = (v2.x - v1.x) / (v2.y - v1.y)
        invslope2 = (v3.x - v1.x) / (v3.y - v1.y)

        x1 = x2 = v1.x
        y = v1.y

        while y <= v2.y:
            _draw_line(Vec2d(x1, y), Vec2d(x2, y))
            x1 += invslope1
            x2 += invslope2
            y += 1

    def fill_top_flat_triangle(v1, v2, v3):
        invslope1 = (v3.x - v1.x) / (v3.y - v1.y)
        invslope2 = (v3.x - v2.x) / (v3.y - v2.y)

        x1 = x2 = v3.x
        y = v3.y

        while y > v2.y:
            _draw_line(Vec2d(x1, y), Vec2d(x2, y))
            x1 -= invslope1
            x2 -= invslope2
            y -= 1

    v1, v2, v3 = sort_vertices_asc_by_y((v1, v2, v3))

    # 填充
    if v1.y == v2.y == v3.y:
        pass
    elif v2.y == v3.y:
        fill_bottom_flat_triangle(v1, v2, v3)
    elif v1.y == v2.y:
        fill_top_flat_triangle(v1, v2, v3)
    else:
        v4 = Vec2d(int(v1.x + (v2.y - v1.y) / (v3.y - v1.y) * (v3.x - v1.x)), v2.y)
        fill_bottom_flat_triangle(v1, v2, v4)
        fill_top_flat_triangle(v2, v4, v3)


# 3D part


class Vec3d:
    __slots__ = "x", "y", "z", "arr"

    def __init__(self, *args):
        # for Vec4d cast
        if len(args) == 1 and isinstance(args[0], Vec4d):
            vec4 = args[0]
            arr_value = (vec4.x, vec4.y, vec4.z)
        else:
            assert len(args) == 3
            arr_value = args
        self.arr = np.array(arr_value, dtype=np.float64)
        self.x, self.y, self.z = self.arr

    def __repr__(self):
        return repr(f"Vec3d({','.join([repr(d) for d in self.arr])})")

    def __sub__(self, other):
        return self.__class__(*[ds - do for ds, do in zip(self.arr, other.arr)])

    def __bool__(self):
        """ False for zero vector (0, 0, 0)
        """
        return any(self.arr)


class Mat4d:
    def __init__(self, narr=None, value=None):
        self.value = np.matrix(narr) if value is None else value

    def __repr__(self):
        return repr(self.value)

    def __mul__(self, other):
        return self.__class__(value=self.value * other.value)


class Vec4d(Mat4d):
    def __init__(self, *narr, value=None):
        if value is not None:
            self.value = value
        elif len(narr) == 1 and isinstance(narr[0], Mat4d):
            self.value = narr[0].value
        else:
            assert len(narr) == 4
            self.value = np.matrix([[d] for d in narr])

        self.x, self.y, self.z, self.w = (
            self.value[0, 0],
            self.value[1, 0],
            self.value[2, 0],
            self.value[3, 0],
        )
        self.arr = self.value.reshape((1, 4))


# Math util
def normalize(v: Vec3d):
    return Vec3d(*speedup.normalize(*v.arr))


def dot_product(a: Vec3d, b: Vec3d):
    return speedup.dot_product(*a.arr, *b.arr)


def cross_product(a: Vec3d, b: Vec3d):
    return Vec3d(*speedup.cross_product(*a.arr, *b.arr))

BASE_LIGHT = 0.9
def get_light_intensity(face) -> float:
    # lights = [Vec3d(-2, 4, -10), Vec3d(10, 4, -2), Vec3d(8, 8, -8), Vec3d(0, 0, -8)]
    lights = [Vec3d(-2, 4, -10)]
    # lights = []

    v1, v2, v3 = face
    up = normalize(cross_product(v2 - v1, v3 - v1))
    intensity = BASE_LIGHT
    for light in lights:
        intensity += dot_product(up, normalize(light))*0.2
    return intensity


def look_at(eye: Vec3d, target: Vec3d, up: Vec3d = Vec3d(0, -1, 0)) -> Mat4d:
    """
    http://www.songho.ca/opengl/gl_camera.html#lookat

    Args:
        eye: 摄像机的世界坐标位置
        target: 观察点的位置
        up: 就是你想让摄像机立在哪个方向
            https://stackoverflow.com/questions/10635947/what-exactly-is-the-up-vector-in-opengls-lookat-function
            这里默认使用了 0, -1, 0, 因为 blender 导出来的模型数据似乎有问题,导致y轴总是反的,于是把摄像机的up也翻一下得了。
    """
    f = normalize(eye - target)
    l = normalize(cross_product(up, f))  # noqa: E741
    u = cross_product(f, l)

    rotate_matrix = Mat4d(
        [[l.x, l.y, l.z, 0], [u.x, u.y, u.z, 0], [f.x, f.y, f.z, 0], [0, 0, 0, 1.0]]
    )
    translate_matrix = Mat4d(
        [[1, 0, 0, -eye.x], [0, 1, 0, -eye.y], [0, 0, 1, -eye.z], [0, 0, 0, 1.0]]
    )

    return Mat4d(value=(rotate_matrix * translate_matrix).value)


def perspective_project(r, t, n, f, b=None, l=None):  # noqa: E741
    """
    目的:
        把相机坐标转换成投影在视网膜的范围在(-1, 1)的笛卡尔坐标

    原理:
        对于x,y坐标,相似三角形可以算出投影点的x,y
        对于z坐标,是假设了near是-1,far是1,然后带进去算的
        http://www.songho.ca/opengl/gl_projectionmatrix.html
        https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix

    推导出来的矩阵:
        [
            2n/(r-l) 0        (r+l/r-l)   0
            0        2n/(t-b) (t+b)/(t-b) 0
            0        0        -(f+n)/f-n  (-2*f*n)/(f-n)
            0        0        -1          0
        ]

    实际上由于我们用的视网膜(near pane)是个关于远点对称的矩形,所以矩阵简化为:
        [
            n/r      0        0           0
            0        n/t      0           0
            0        0        -(f+n)/f-n  (-2*f*n)/(f-n)
            0        0        -1          0
        ]

    Args:
        r: right, t: top, n: near, f: far, b: bottom, l: left
    """
    return Mat4d(
        [
            [n / r, 0, 0, 0],
            [0, n / t, 0, 0],
            [0, 0, -(f + n) / (f - n), (-2 * f * n) / (f - n)],
            [0, 0, -1, 0],
        ]
    )


def draw(screen_vertices, world_vertices, model, canvas, wireframe=True):
    """standard algorithm
    """
    for triangle_indices in model.indices:
        vertex_group = [screen_vertices[idx - 1] for idx in triangle_indices]
        face = [Vec3d(world_vertices[idx - 1]) for idx in triangle_indices]
        if wireframe:
            draw_triangle(*vertex_group, canvas=canvas, color="black", wireframe=True)
        else:
            intensity = get_light_intensity(face)
            if intensity > 0:
                draw_triangle(
                    *vertex_group, canvas=canvas, color=(int(intensity * 255),) * 3
                )


def draw_with_z_buffer(screen_vertices, world_vertices, model, canvas):
    """ z-buffer algorithm
    """
    intensities = []
    triangles = []
    for i, triangle_indices in enumerate(model.indices):
        screen_triangle = [screen_vertices[idx - 1] for idx in triangle_indices]
        uv_triangle = [model.uv_vertices[idx - 1] for idx in model.uv_indices[i]]
        world_triangle = [Vec3d(world_vertices[idx - 1]) for idx in triangle_indices]
        intensities.append(abs(get_light_intensity(world_triangle)))
        # take off the class to let Cython work
        triangles.append(
            [np.append(screen_triangle[i].arr, uv_triangle[i]) for i in range(3)]
        )

    faces = speedup.generate_faces(
        np.array(triangles, dtype=np.float64), model.texture_width, model.texture_height
    )
    for face_dots in faces:
        for dot in face_dots:
            intensity = intensities[dot[0]]
            u, v = dot[3], dot[4]
            color = model.texture_array[u, v]
            canvas.draw((dot[1], dot[2]), tuple(int(c * intensity) for c in color[:3]))
            # TODO: add object rendering mode (no texture)
            # canvas.draw((dot[1], dot[2]), (int(255 * intensity),) * 3)


def render(model, height, width, filename, cam_loc, wireframe=False):
    """
    Args:
        model: the Model object
        height: cavas height
        width: cavas width
        picname: picture file name
    """
    model_matrix = Mat4d([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
    # TODO: camera configration
    view_matrix = look_at(Vec3d(cam_loc[0], cam_loc[1], cam_loc[2]), Vec3d(0, 0, 0))
    projection_matrix = perspective_project(0.5, 0.5, 3, 1000)

    world_vertices = []

    def mvp(v):
        world_vertex = model_matrix * v
        world_vertices.append(Vec4d(world_vertex))
        return projection_matrix * view_matrix * world_vertex

    def ndc(v):
        """
        各个坐标同时除以 w,得到 NDC 坐标
        """
        v = v.value
        w = v[3, 0]
        x, y, z = v[0, 0] / w, v[1, 0] / w, v[2, 0] / w
        return Mat4d([[x], [y], [z], [1 / w]])

    def viewport(v):
        x = y = 0
        w, h = width, height
        n, f = 0.3, 1000
        return Vec3d(
            w * 0.5 * v.value[0, 0] + x + w * 0.5,
            h * 0.5 * v.value[1, 0] + y + h * 0.5,
            0.5 * (f - n) * v.value[2, 0] + 0.5 * (f + n),
        )

    # the render pipeline
    screen_vertices = [viewport(ndc(mvp(v))) for v in model.vertices]

    with Canvas(filename, height, width) as canvas:
        if wireframe:
            draw(screen_vertices, world_vertices, model, canvas)
        else:
            draw_with_z_buffer(screen_vertices, world_vertices, model, canvas)
        
        render_img = canvas.add_white_border().copy()
    return render_img