picpilot-server / scripts /sdxl_lora_tuner.py
VikramSingh178's picture
refactor: Update SDXL-LoRA inference pipeline to load multiple adapter weights
ebbf256
import os
from config import Config
import shutil
import random
import math
import numpy as np
import torch
import torch.nn.functional as F
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import (
DistributedDataParallelKwargs,
ProjectConfiguration,
set_seed,
)
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import diffusers
logger = get_logger(__name__)
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionXLPipeline,
UNet2DConditionModel,
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
_set_state_dict_into_text_encoder,
cast_training_params,
compute_snr,
)
from diffusers.utils import (
convert_state_dict_to_diffusers,
convert_unet_state_dict_to_peft,
is_wandb_available,
is_xformers_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.torch_utils import is_compiled_module
logger = get_logger(__name__)
def save_model_card(
repo_id: str,
images: list = None,
base_model: str = None,
dataset_name: str = None,
train_text_encoder: bool = False,
repo_folder: str = None,
vae_path: str = None,
):
img_str = ""
if images is not None:
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"![img_{i}](./image_{i}.png)\n"
img_str = "" # Declare the img_str variable
model_description = "SDXL Product Images"
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="creativeml-openrail-m",
base_model=base_model,
model_description=model_description,
inference=True,
)
tags = [
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"diffusers",
"diffusers-training",
]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def tokenize_prompt(tokenizer, prompt):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
return text_input_ids
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
prompt_embeds_list = []
for i, text_encoder in enumerate(text_encoders):
if tokenizers is not None:
tokenizer = tokenizers[i]
text_input_ids = tokenize_prompt(tokenizer, prompt)
else:
assert text_input_ids_list is not None
text_input_ids = text_input_ids_list[i]
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
return_dict=False,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds[-1][-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return prompt_embeds, pooled_prompt_embeds
def main():
config = Config()
from pathlib import Path
from contextlib import nullcontext
if config.report_to == "wandb" and config.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
logging_dir = Path(config.output_dir, config.logging_dir)
if torch.backends.mps.is_available() and config.mixed_precision == "bf16":
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
accelerator_project_config = ProjectConfiguration(
project_dir=config.output_dir, logging_dir=logging_dir
)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=config.gradient_accumulation_steps,
mixed_precision=config.mixed_precision,
log_with=config.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
import logging
if config.report_to == "wandb":
if not is_wandb_available():
raise ImportError(
"Make sure to install wandb if you want to use it for logging during training."
)
import wandb
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
from datasets import utils as datasets_utils
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets_utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets_utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if config.seed is not None:
set_seed(config.seed)
# Handle the repository creation
if accelerator.is_main_process:
if config.output_dir is not None:
os.makedirs(config.output_dir, exist_ok=True)
if config.push_to_hub:
repo_id = create_repo(
repo_id=config.hub_model_id or Path(config.output_dir).name,
exist_ok=True,
token=config.hub_token,
).repo_id
# Load the tokenizers
tokenizer_one = AutoTokenizer.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=config.revision,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=config.revision,
use_fast=False,
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
config.pretrained_model_name_or_path, config.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
config.pretrained_model_name_or_path,
config.revision,
subfolder="text_encoder_2",
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(
config.pretrained_model_name_or_path, subfolder="scheduler"
)
text_encoder_one = text_encoder_cls_one.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=config.revision,
variant=config.variant,
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="text_encoder_2",
revision=config.revision,
variant=config.variant,
)
vae_path = (
config.pretrained_model_name_or_path
if config.pretrained_vae_model_name_or_path is None
else config.pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if config.pretrained_vae_model_name_or_path is None else None,
revision=config.revision,
variant=config.variant,
)
unet = UNet2DConditionModel.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="unet",
revision=config.revision,
variant=config.variant,
)
# We only train the additional adapter LoRA layers
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet.requires_grad_(False)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
# The VAE is in float32 to avoid NaN losses.
unet.to(accelerator.device, dtype=weight_dtype)
if config.pretrained_vae_model_name_or_path is None:
vae.to(accelerator.device, dtype=torch.float32)
else:
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
if config.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
# now we will add new LoRA weights to the attention layers
# Set correct lora layers
unet_lora_config = LoraConfig(
r=config.rank,
lora_alpha=config.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
unet.add_adapter(unet_lora_config)
# The text encoder comes from 🤗 transformers, we will also attach adapters to it.
if config.train_text_encoder:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
text_lora_config = LoraConfig(
r=config.rank,
lora_alpha=config.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
# there are only two options here. Either are just the unet attn processor layers
# or there are the unet and text encoder attn layers
unet_lora_layers_to_save = None
text_encoder_one_lora_layers_to_save = None
text_encoder_two_lora_layers_to_save = None
for model in models:
if isinstance(unwrap_model(model), type(unwrap_model(unet))):
unet_lora_layers_to_save = convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
elif isinstance(
unwrap_model(model), type(unwrap_model(text_encoder_one))
):
text_encoder_one_lora_layers_to_save = (
convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
)
elif isinstance(
unwrap_model(model), type(unwrap_model(text_encoder_two))
):
text_encoder_two_lora_layers_to_save = (
convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
)
else:
raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
StableDiffusionXLPipeline.save_lora_weights(
output_dir,
unet_lora_layers=unet_lora_layers_to_save,
text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
)
def load_model_hook(models, input_dir):
unet_ = None
text_encoder_one_ = None
text_encoder_two_ = None
while len(models) > 0:
model = models.pop()
if isinstance(model, type(unwrap_model(unet))):
unet_ = model
elif isinstance(model, type(unwrap_model(text_encoder_one))):
text_encoder_one_ = model
elif isinstance(model, type(unwrap_model(text_encoder_two))):
text_encoder_two_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
lora_state_dict, _ = LoraLoaderMixin.lora_state_dict(input_dir)
unet_state_dict = {
f'{k.replace("unet.", "")}': v
for k, v in lora_state_dict.items()
if k.startswith("unet.")
}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
incompatible_keys = set_peft_model_state_dict(
unet_, unet_state_dict, adapter_name="default"
)
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
if config.train_text_encoder:
_set_state_dict_into_text_encoder(
lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_
)
_set_state_dict_into_text_encoder(
lora_state_dict,
prefix="text_encoder_2.",
text_encoder=text_encoder_two_,
)
# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if config.mixed_precision == "fp16":
models = [unet_]
if config.train_text_encoder:
models.extend([text_encoder_one_, text_encoder_two_])
cast_training_params(models, dtype=torch.float32)
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if config.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if config.train_text_encoder:
text_encoder_one.gradient_checkpointing_enable()
text_encoder_two.gradient_checkpointing_enable()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if config.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if config.scale_lr:
config.learning_rate = (
config.learning_rate
* config.gradient_accumulation_steps
* config.train_batch_size
* accelerator.num_processes
)
# Make sure the trainable params are in float32.
if config.mixed_precision == "fp16":
models = [unet]
if config.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
cast_training_params(models, dtype=torch.float32)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if config.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# Optimizer creation
params_to_optimize = list(filter(lambda p: p.requires_grad, unet.parameters()))
if config.train_text_encoder:
params_to_optimize = (
params_to_optimize
+ list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
+ list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))
)
optimizer = optimizer_class(
params_to_optimize,
lr=config.learning_rate,
betas=(config.adam_beta1, config.adam_beta2),
weight_decay=config.adam_weight_decay,
eps=config.adam_epsilon,
)
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if config.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
config.dataset_name,
config.dataset_config_name,
cache_dir=config.cache_dir,
data_dir=config.train_data_dir,
)
else:
data_files = {}
if config.train_data_dir is not None:
data_files["test"] = os.path.join(config.train_data_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
cache_dir=config.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["test"].column_names
# 6. Get the column names for input/target.
DATASET_NAME_MAPPING = {
"lambdalabs/pokemon-blip-captions": ("image", "text"),
}
dataset_columns = DATASET_NAME_MAPPING.get(config.dataset_name, None)
if config.image_column is None:
image_column = (
dataset_columns[0] if dataset_columns is not None else column_names[0]
)
else:
image_column = config.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{config.image_column}' needs to be one of: {', '.join(column_names)}"
)
if config.caption_column is None:
caption_column = (
dataset_columns[1] if dataset_columns is not None else column_names[1]
)
else:
caption_column = config.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{config.caption_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
tokens_one = tokenize_prompt(tokenizer_one, captions)
tokens_two = tokenize_prompt(tokenizer_two, captions)
return tokens_one, tokens_two
# Preprocessing the datasets.
train_resize = transforms.Resize(
config.resolution, interpolation=transforms.InterpolationMode.BILINEAR
)
train_crop = (
transforms.CenterCrop(config.resolution)
if config.center_crop
else transforms.RandomCrop(config.resolution)
)
train_flip = transforms.RandomHorizontalFlip(p=1.0)
train_transforms = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
# image aug
original_sizes = []
all_images = []
crop_top_lefts = []
for image in images:
original_sizes.append((image.height, image.width))
image = train_resize(image)
if config.random_flip and random.random() < 0.5:
# flip
image = train_flip(image)
if config.center_crop:
y1 = max(0, int(round((image.height - config.resolution) / 2.0)))
x1 = max(0, int(round((image.width - config.resolution) / 2.0)))
image = train_crop(image)
else:
y1, x1, h, w = train_crop.get_params(
image, (config.resolution, config.resolution)
)
image = crop(image, y1, x1, h, w)
crop_top_left = (y1, x1)
crop_top_lefts.append(crop_top_left)
image = train_transforms(image)
all_images.append(image)
examples["original_sizes"] = original_sizes
examples["crop_top_lefts"] = crop_top_lefts
examples["pixel_values"] = all_images
tokens_one, tokens_two = tokenize_captions(examples)
examples["input_ids_one"] = tokens_one
examples["input_ids_two"] = tokens_two
if config.debug_loss:
fnames = [
os.path.basename(image.filename)
for image in examples[image_column]
if image.filename
]
if fnames:
examples["filenames"] = fnames
return examples
with accelerator.main_process_first():
if config.max_train_samples is not None:
dataset["test"] = (
dataset["test"]
.shuffle(seed=config.seed)
.select(range(config.max_train_samples))
)
# Set the training transforms
train_dataset = dataset["test"].with_transform(
preprocess_train, output_all_columns=True
)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
original_sizes = [example["original_sizes"] for example in examples]
crop_top_lefts = [example["crop_top_lefts"] for example in examples]
input_ids_one = torch.stack([example["input_ids_one"] for example in examples])
input_ids_two = torch.stack([example["input_ids_two"] for example in examples])
result = {
"pixel_values": pixel_values,
"input_ids_one": input_ids_one,
"input_ids_two": input_ids_two,
"original_sizes": original_sizes,
"crop_top_lefts": crop_top_lefts,
}
filenames = [
example["filenames"] for example in examples if "filenames" in example
]
if filenames:
result["filenames"] = filenames
return result
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=config.train_batch_size,
num_workers=config.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / config.gradient_accumulation_steps
)
if config.max_train_steps is None:
config.max_train_steps = config.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
config.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=config.lr_warmup_steps * config.gradient_accumulation_steps,
num_training_steps=config.max_train_steps * config.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
if config.train_text_encoder:
(
unet,
text_encoder_one,
text_encoder_two,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
unet,
text_encoder_one,
text_encoder_two,
optimizer,
train_dataloader,
lr_scheduler,
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / config.gradient_accumulation_steps
)
if overrode_max_train_steps:
config.max_train_steps = config.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
config.num_train_epochs = math.ceil(
config.max_train_steps / num_update_steps_per_epoch
)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2image-fine-tune", config=vars(config))
# Train!
total_batch_size = (
config.train_batch_size
* accelerator.num_processes
* config.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {config.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {config.train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {config.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {config.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if config.resume_from_checkpoint:
if config.resume_from_checkpoint != "latest":
path = os.path.basename(config.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(config.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{config.resume_from_checkpoint}' does not exist. Starting a new training run."
)
config.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(config.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, config.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
for epoch in range(first_epoch, config.num_train_epochs):
unet.train()
if config.train_text_encoder:
text_encoder_one.train()
text_encoder_two.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
if config.pretrained_vae_model_name_or_path is not None:
pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
else:
pixel_values = batch["pixel_values"]
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae.config.scaling_factor
if config.pretrained_vae_model_name_or_path is None:
model_input = model_input.to(weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
if config.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += config.noise_offset * torch.randn(
(model_input.shape[0], model_input.shape[1], 1, 1),
device=model_input.device,
)
bsz = model_input.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(bsz,),
device=model_input.device,
)
timesteps = timesteps.long()
# Add noise to the model input according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_model_input = noise_scheduler.add_noise(
model_input, noise, timesteps
)
# time ids
def compute_time_ids(original_size, crops_coords_top_left):
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
target_size = (config.resolution, config.resolution)
add_time_ids = list(
original_size + crops_coords_top_left + target_size
)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(
accelerator.device, dtype=weight_dtype
)
return add_time_ids
add_time_ids = torch.cat(
[
compute_time_ids(s, c)
for s, c in zip(
batch["original_sizes"], batch["crop_top_lefts"]
)
]
)
# Predict the noise residual
unet_added_conditions = {"time_ids": add_time_ids}
prompt_embeds, pooled_prompt_embeds = encode_prompt(
text_encoders=[text_encoder_one, text_encoder_two],
tokenizers=None,
prompt=None,
text_input_ids_list=[
batch["input_ids_one"],
batch["input_ids_two"],
],
)
unet_added_conditions.update({"text_embeds": pooled_prompt_embeds})
model_pred = unet(
noisy_model_input,
timesteps,
prompt_embeds,
added_cond_kwargs=unet_added_conditions,
return_dict=False,
)[0]
# Get the target for loss depending on the prediction type
if config.prediction_type is not None:
# set prediction_type of scheduler if defined
noise_scheduler.register_to_config(
prediction_type=config.prediction_type
)
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
if config.snr_gamma is None:
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="mean"
)
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(noise_scheduler, timesteps)
mse_loss_weights = torch.stack(
[snr, config.snr_gamma * torch.ones_like(timesteps)], dim=1
).min(dim=1)[0]
if noise_scheduler.config.prediction_type == "epsilon":
mse_loss_weights = mse_loss_weights / snr
elif noise_scheduler.config.prediction_type == "v_prediction":
mse_loss_weights = mse_loss_weights / (snr + 1)
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="none"
)
loss = (
loss.mean(dim=list(range(1, len(loss.shape))))
* mse_loss_weights
)
loss = loss.mean()
if config.debug_loss and "filenames" in batch:
for fname in batch["filenames"]:
accelerator.log({"loss_for_" + fname: loss}, step=global_step)
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(
loss.repeat(config.train_batch_size)
).mean()
train_loss += avg_loss.item() / config.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(
params_to_optimize, config.max_grad_norm
)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if accelerator.is_main_process:
if global_step % config.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if config.checkpoints_total_limit is not None:
checkpoints = os.listdir(config.output_dir)
checkpoints = [
d for d in checkpoints if d.startswith("checkpoint")
]
checkpoints = sorted(
checkpoints, key=lambda x: int(x.split("-")[1])
)
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= config.checkpoints_total_limit:
num_to_remove = (
len(checkpoints)
- config.checkpoints_total_limit
+ 1
)
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(
f"removing checkpoints: {', '.join(removing_checkpoints)}"
)
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(
config.output_dir, removing_checkpoint
)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(
config.output_dir, f"checkpoint-{global_step}"
)
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {
"step_loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
}
progress_bar.set_postfix(**logs)
if global_step >= config.max_train_steps:
break
if accelerator.is_main_process:
if (
config.validation_prompt is not None
and epoch % config.validation_epochs == 0
):
logger.info(
f"Running validation... \n Generating {config.num_validation_images} images with prompt:"
f" {config.validation_prompt}."
)
# create pipeline
pipeline = StableDiffusionXLPipeline.from_pretrained(
config.pretrained_model_name_or_path,
vae=vae,
text_encoder=unwrap_model(text_encoder_one),
text_encoder_2=unwrap_model(text_encoder_two),
unet=unwrap_model(unet),
revision=config.revision,
variant=config.variant,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = (
torch.Generator(device=accelerator.device).manual_seed(config.seed)
if config.seed
else None
)
pipeline_args = {"prompt": config.validation_prompt}
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
images = [
pipeline(**pipeline_args, generator=generator).images[0]
for _ in range(config.num_validation_images)
]
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images(
"validation", np_images, epoch, dataformats="NHWC"
)
if tracker.name == "wandb":
tracker.log(
{
"validation": [
wandb.Image(
image,
caption=f"{i}: {config.validation_prompt}",
)
for i, image in enumerate(images)
]
}
)
del pipeline
torch.cuda.empty_cache()
# Save the lora layers
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = unwrap_model(unet)
unet_lora_state_dict = convert_state_dict_to_diffusers(
get_peft_model_state_dict(unet)
)
if config.train_text_encoder:
text_encoder_one = unwrap_model(text_encoder_one)
text_encoder_two = unwrap_model(text_encoder_two)
text_encoder_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_one)
)
text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_two)
)
else:
text_encoder_lora_layers = None
text_encoder_2_lora_layers = None
StableDiffusionXLPipeline.save_lora_weights(
save_directory=config.output_dir,
unet_lora_layers=unet_lora_state_dict,
text_encoder_lora_layers=text_encoder_lora_layers,
text_encoder_2_lora_layers=text_encoder_2_lora_layers,
)
del unet
del text_encoder_one
del text_encoder_two
del text_encoder_lora_layers
del text_encoder_2_lora_layers
torch.cuda.empty_cache()
# Final inference
# Make sure vae.dtype is consistent with the unet.dtype
if config.mixed_precision == "fp16":
vae.to(weight_dtype)
# Load previous pipeline
pipeline = StableDiffusionXLPipeline.from_pretrained(
config.pretrained_model_name_or_path,
vae=vae,
revision=config.revision,
variant=config.variant,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
# load attention processors
pipeline.load_lora_weights(config.output_dir)
# run inference
images = []
if config.validation_prompt and config.num_validation_images > 0:
generator = (
torch.Generator(device=accelerator.device).manual_seed(config.seed)
if config.seed
else None
)
images = [
pipeline(
config.validation_prompt,
num_inference_steps=25,
generator=generator,
).images[0]
for _ in range(config.num_validation_images)
]
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images(
"test", np_images, epoch, dataformats="NHWC"
)
if tracker.name == "wandb":
tracker.log(
{
"test": [
wandb.Image(
image, caption=f"{i}: {config.validation_prompt}"
)
for i, image in enumerate(images)
]
}
)
if config.push_to_hub:
save_model_card(
repo_id,
images=images,
base_model=config.pretrained_model_name_or_path,
dataset_name=config.dataset_name,
train_text_encoder=config.train_text_encoder,
repo_folder=config.output_dir,
vae_path=config.pretrained_vae_model_name_or_path,
)
upload_folder(
repo_id=repo_id,
folder_path=config.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
accelerator.end_training()
if __name__ == "__main__":
main()